首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
Z-phenylacetaldoxime (Z-PAOx) degrading bacterium, identified as Bacillus sp. strain OxB-1, was isolated from soil after 2 months acclimation. The enzyme involved in the degradation of Z-PAOx was induced by the aldoxime and required FMN for its activity. The enzyme was partially purified from the cell-free extract of the strain and shown to catalyze the stoichiometric dehydration reaction of Z-PAOx to form phenylacetonitrile (PAN). Activities of nitrilase and amidase acting on PAN and phenylacetamide (PAAm), respectively, to form phenylacetate (PAA) were found in the strain grown on Z-PAOx. This is the first report of aldoxime dehydratase co-existing with nitrile degrading enzymes in bacteria.  相似文献   

2.
Metabolic engineering is a powerful tool which has been widely used for producing valuable products. For improving l-phenylalanine (l-Phe) accumulation in Corynebacterium glutamicum, we have investigated the target genes involved in the biosynthetic pathways. The genes involved in the biosynthesis of l-Phe were found to be strictly regulated genes by feedback inhibition. As a result, overexpression of the native wild-type genes aroF, aroG or pheA resulted in a slight increase of l-Phe. In contrast, overexpression of aroF wt or pheA fbr from E. coli significantly increased l-Phe production. Co-overexpression of aroF wt and pheA fbr improved the titer of l-Phe to 4.46 ± 0.06 g l?1. To further analyze the target enzymes in the aromatic amino acid synthesis pathway between C. glutamicum and E. coli, the wild-type gene aroH from E. coli was overexpressed and evaluated in C. glutamicum. As predicted, upregulation of the wild-type gene aroH resulted in a remarkable increase of l-Phe production. Co-overexpression of the mutated pheA fbr and the wild-type gene aroH resulted in the production of l-Phe up to 4.64 ± 0.09 g l?1. Based on these results we conclude that the wild-type gene aroH from E. coli is an appropriate target gene for pathway engineering in C. glutamicum for the production of aromatic amino acids.  相似文献   

3.
The l-phenylalanine (l-Phe) production by Escherichia coli WSH-Z06 (pAP-B03) was frequently prevented by bacteriophage BP-1 infestation. To cope with the bacteriophage BP-1 problem for an improved l-Phe production, one bacteriophage BP-1-resistant mutant, E. coli BR-42, was obtained from 416 mutant colonies of E. coli WSH-Z06 after N-methyl-N’-nitro-N-nitrosoguanidine (NTG) mutagenesis by selection for resistance to bacteriophage BP-1. The recombinant E. coli BR-42-carrying plasmid pAP-B03 had a high capacity in l-Phe production and a remarkable tolerance to 1 × 1010 pfu (plaque-forming unit)/ml bacteriophage stock. For an enhanced l-Phe production by E. coli BR-42 (pAP-B03), the effects of different feeding strategies including pH–stat, constant rate feeding, linear decreasing rate feeding, and exponential feeding on l-Phe production were investigated; and a two-stage feeding strategy, namely exponential feeding at μ set = 0.18 h−1 in the first 20 h and a following linear varying rate feeding with F = (−0.55 × t + 18.6) ml/h, was developed to improve l-Phe production. With this two-stage feeding approach, a maximum l-Phe titer of 57.63 g/l with a high l-Phe productivity (1.15 g/l/h) was achieved, which was 15% higher than the highest level (50 g/l) reported so far according to our knowledge. The recombinant E. coli BR-42 (pAP-B03) is a potential l-Phe over-producer in substantial prevention of bacteriophage BP-1 infestation compared to its parent strain WSH-Z06 (pAP-B03).  相似文献   

4.
5.
α-Keto-γ-methylthiobutyric acid (KMTB), a keto derivative of l-methionine, has great potential for use as an alternative to l-methionine in the poultry industry and as an anti-cancer drug. This study developed an environment friendly process for KMTB production from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase (l-AAD) from Proteus vulgaris. We first overexpressed the P. vulgaris l-AAD in E. coli BL21 (DE3) and further optimized the whole-cell transformation process. The maximal molar conversion ratio of l-methionine to KMTB was 71.2% (mol/mol) under the optimal conditions (70 g/L l-methionine, 20 g/L whole-cell biocatalyst, 5 mM CaCl2, 40°C, 50 mM Tris-HCl [pH 8.0]). Then, error-prone polymerase chain reaction was used to construct P. vulgaris l-AAD mutant libraries. Among approximately 104 mutants, two mutants bearing lysine 104 to arginine and alanine 337 to serine substitutions showed 82.2% and 80.8% molar conversion ratios, respectively. Furthermore, the combination of these mutations enhanced the catalytic activity and molar conversion ratio by 1.3-fold and up to 91.4% with a KMTB concentration of 63.6 g/L. Finally, the effect of immobilization on whole-cell transformation was examined, and the immobilized whole-cell biocatalyst with Ca2+ alginate increased reusability by 41.3% compared to that of free cell production. Compared with the traditional multi-step chemical synthesis, our one-step biocatalytic production of KMTB has an advantage in terms of environmental pollution and thus has great potential for industrial KMTB production.  相似文献   

6.
Production of Z-type farnesyl diphosphate (FPP) has not been reported in Escherichia coli. Here we present the fusion enzyme (ILRv) of E. coli E,E-FPP synthase (IspA) and Mycobacterium tuberculosis Z,E-FPP synthase (Rv1086), which can produce primarily Z,E-FPP rather than E,E-FPP, the predominant stereoisomer found in most organisms. Z,E-farnesol (FOH) was produced from E. coli harboring the bottom portion of the MVA pathway and the fusion FPP synthase (ILRv) at a titer of 115.6 mg/L in 2 YT medium containing 1% (v/v) glycerol as a carbon source and 5 mM mevalonate. The Z,E-FOH production was improved by 15-fold, compared with 7.7 mg/L obtained from the co-overexpression of separate IspA and Rv1086. The Z,E-FPP was not metabolized in native metabolic pathways of E. coli. It would be of interest to produce Z,E-FPP derived sesquiterpenes from recombinant E. coli due to no loss of Z,E-FPP substrate in endogenous metabolism of the host strain.  相似文献   

7.
We developed a novel process for efficient synthesis of l-threo-3-hydroxyaspartic acid (l-THA) using microbial hydroxylase and hydrolase. A well-characterized mutant of asparagine hydroxylase (AsnO-D241N) and its homologous enzyme (SCO2693-D246N) were adaptable to the direct hydroxylation of l-aspartic acid; however, the yields were strictly low. Therefore, the highly stable and efficient wild-type asparagine hydroxylases AsnO and SCO2693 were employed to synthesize l-THA. By using these recombinant enzymes, l-THA was obtained by l-asparagine hydroxylation by AsnO followed by amide hydrolysis by asparaginase via 3-hydroxyasparagine. Subsequently, the two-step reaction was adapted to one-pot bioconversion in a test tube. l-THA was obtained in a small amount with a molar yield of 0.076% by using intact Escherichia coli expressing the asnO gene, and thus, two asparaginase-deficient mutants of E. coli were investigated. A remarkably increased l-THA yield of 8.2% was obtained with the asparaginase I-deficient mutant. When the expression level of the asnO gene was enhanced by using the T7 promoter in E. coli instead of the lac promoter, the l-THA yield was significantly increased to 92%. By using a combination of the E. coli asparaginase I-deficient mutant and the T7 expression system, a whole-cell reaction in a jar fermentor was conducted, and consequently, l-THA was successfully obtained from l-asparagine with a maximum yield of 96% in less time than with test tube-scale production. These results indicate that asparagine hydroxylation followed by hydrolysis would be applicable to the efficient production of l-THA.  相似文献   

8.
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.The Escherichia coli genome contains three genes, sdaA, sdaB, and tdcG, specifying three very similar 4Fe4S l-serine deaminases. These enzymes are very specific for l-serine for which they have unusually high Km values (3, 32). Expression of the three genes is regulated so that at least one of the gene products is synthesized under all common growth conditions (25). This suggests an important physiological role for the enzymes. However, why E. coli needs to deaminate l-serine has been a long-standing problem of E. coli physiology, the more so since it cannot use l-serine as the sole carbon source.We showed recently that an E. coli strain devoid of all three l-serine deaminases (l-SDs) loses control over its size, shape, and cell division when faced with complex amino acid mixtures containing l-serine (32). We attributed this to starvation for single-carbon (C1) units and/or S-adenosylmethionine (SAM). C1 units are usually made from serine via serine hydroxymethyl transferase (GlyA) or via glycine cleavage (GCV). The l-SD-deficient triple mutant strain is starved for C1 in the presence of amino acids, because externally provided glycine inhibits GlyA and a very high internal l-serine concentration along with several other amino acids inhibits glycine cleavage. While the parent cell can defend itself by reducing the l-serine level by deamination, this crucial reaction is missing in the ΔsdaA ΔsdaB ΔtdcG triple mutant. We therefore consider these to be “defensive” serine deaminases.The fact that an inability to deaminate l-serine leads to a high concentration of l-serine and inhibition of GlyA is not surprising. However, it is not obvious why a high level of l-serine inhibits cell division and causes swelling, lysis, and filamentation. Serine toxicity due to inhibition of biosynthesis of isoleucine (11) and aromatic amino acids (21) has been reported but is not relevant here, since these amino acids are provided in Casamino Acids.We show here that at high internal concentrations, l-serine also causes problems with peptidoglycan synthesis, thus weakening the cell wall. Peptidoglycan is a polymer of long glycan chains made up of alternating N-acetylglucosamine and N-acetylmuramic acid residues, cross-linked by l-alanyl-γ-d-glutamyl-meso-diaminopimelyl-d-alanine tetrapeptides (1, 28). The glucosamine and muramate residues and the pentapeptide (from which the tetrapeptide is derived) are all synthesized in the cytoplasm and then are exported to be polymerized into extracellular peptidoglycan (2).In this paper, we show that lysis is caused by l-serine interfering with the first step of synthesis of the cross-linking peptide, the addition of l-alanine to uridine diphosphate-N-acetylmuramate. This interference is probably due to a competition between serine and l-alanine for the ligase, MurC, which adds the first l-alanine to UDP-N-acetylmuramate (7, 10, 15). As described here, the weakening of the cell wall by l-serine can be overcome by a variety of methods that reduce the endogenous l-serine pool or counteract the effects of high levels of l-serine.  相似文献   

9.
Diol synthase from Aspergillus nidulans was cloned and expressed in Escherichia coli. Recombinant E. coli cells expressing diol synthase from A. nidulans converted linoleic acid to a product that was identified as 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The recombinant cells and the purified enzyme showed the highest activity for linoleic acid among the fatty acids tested. The optimal reaction conditions for the production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid using whole recombinant E. coli cells expressing diol synthase were pH 7.5, 35°C, 250 rpm, 5 g l?1 linoleic acid, 23 g l?1 cells, and 20% (v/v) dimethyl sulfoxide in a 250-ml baffled flask. Under these optimized conditions, whole recombinant cells expressing diol synthase produced 4.98 g l?1 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid for 150 min without detectable byproducts, with a conversion yield of 99% (w/w) and a productivity of 2.5 g l?1 h?1. This is the first report on the biotechnological production of dihydroxy fatty acid using whole recombinant cells expressing diol synthase.  相似文献   

10.
11.
The uncharacterized gene previously proposed as a mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme was observed at pH 7.5 and 40°C in the presence of 0.5 mM Co2+. The isomerization activity was specific for aldose substrates possessing hydroxyl groups oriented in the same direction at the C-2 and C-3 positions, such as the d and l forms of ribose, lyxose, talose, mannose, and allose. The enzyme exhibited the highest activity for l-ribulose among all pentoses and hexoses. Thus, l-ribose, as a potential starting material for many l-nucleoside-based pharmaceutical compounds, was produced at 213 g/liter from 300-g/liter l-ribulose by mannose-6-phosphate isomerase at 40°C for 3 h, with a conversion yield of 71% and a volumetric productivity of 71 g liter−1 h−1.l-Ribose is a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, and it is not abundant in nature (5, 19). l-Ribose has been produced mainly by chemical synthesis from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, or d-mannono-1,4-lactone (2, 17, 23). Biological l-ribose manufacture has been investigated using ribitol or l-ribulose. Recently, l-ribose was produced from ribitol by a recombinant Escherichia coli containing an NAD-dependent mannitol-1-dehydrogenase (MDH) with a 55% conversion yield when 100 g/liter ribitol was used in a 72-h fermentation (18). However, the volumetric productivity of l-ribose in the fermentation is 28-fold lower than that of the chemical method synthesized from l-arabinose (8). l-Ribulose has been biochemically converted from l-ribose using an l-ribose isomerase from an Acinetobacter sp. (9), an l-arabinose isomerase mutant from Escherichia coli (4), a d-xylose isomerase mutant from Actinoplanes missouriensis (14), and a d-lyxose isomerase from Cohnella laeviribosi (3), indicating that l-ribose can be produced from l-ribulose by these enzymes. However, the enzymatic production of l-ribulose is slow, and the enzymatic production of l-ribose from l-ribulose has been not reported.Sugar phosphate isomerases, such as ribose-5-phosphate isomerase, glucose-6-phosphate isomerase, and galactose-6-phosphate isomerase, work as general aldose-ketose isomerases and are useful tools for producing rare sugars, because they convert the substrate sugar phosphates and the substrate sugars without phosphate to have a similar configuration (11, 12, 21, 22). l-Ribose isomerase from an Acinetobacter sp. (9) and d-lyxose isomerase from C. laeviribosi (3) had activity with l-ribose, d-lyxose, and d-mannose. Thus, we can apply mannose-6-phosphate (EC 5.3.1.8) isomerase to the production of l-ribose, because there are no sugar phosphate isomerases relating to l-ribose and d-lyxose. The production of the expensive sugar l-ribose (bulk price, $1,000/kg) from the rare sugar l-ribulose by mannose-6-phosphate isomerase may prove to be a valuable industrial process, because we have produced l-ribulose from the cheap sugar l-arabinose (bulk price, $50/kg) using the l-arabinose isomerase from Geobacillus thermodenitrificans (20) (Fig. (Fig.11).Open in a separate windowFIG. 1.Schematic representation for the production of l-ribulose from l-arabinose by G. thermodenitrificans l-arabinose isomerase and the production of l-ribose from l-ribulose by B. subtilis mannose-6-phosphate isomerase.In this study, the gene encoding mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in E. coli. The substrate specificity of the recombinant enzyme for various aldoses and ketoses was investigated, and l-ribulose exhibited the highest activity among all pentoses and hexoses. Therefore, mannose-6-phosphate isomerase was applied to the production of l-ribose from l-ribulose.  相似文献   

12.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

13.
Organisms that overproduced l-cysteine and l-cystine from glucose were constructed by using Escherichia coli K-12 strains. cysE genes coding for altered serine acetyltransferase, which was genetically desensitized to feedback inhibition by l-cysteine, were constructed by replacing the methionine residue at position 256 of the serine acetyltransferase protein with 19 other amino acid residues or the termination codon to truncate the carboxy terminus from amino acid residues 256 to 273 through site-directed mutagenesis by using PCR. A cysteine auxotroph, strain JM39, was transformed with plasmids having these altered cysE genes. The serine acetyltransferase activities of most of the transformants, which were selected based on restored cysteine requirements and ampicillin resistance, were less sensitive than the serine acetyltransferase activity of the wild type to feedback inhibition by l-cysteine. At the same time, these transformants produced approximately 200 mg of l-cysteine plus l-cystine per liter, whereas these amino acids were not detected in the recombinant strain carrying the wild-type serine acetyltransferase gene. However, the production of l-cysteine and l-cystine by the transformants was very unstable, presumably due to a cysteine-degrading enzyme of the host, such as cysteine desulfhydrase. Therefore, mutants that did not utilize cysteine were derived from host strain JM39 by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. When a newly derived host was transformed with plasmids having the altered cysE genes, we found that the production of l-cysteine plus l-cystine was markedly increased compared to production in JM39.l-Cysteine, one of the important amino acids used in the pharmaceutical, food, and cosmetics industries, has been obtained by extracting it from acid hydrolysates of the keratinous proteins in human hair and feathers. The first successful microbial process used for industrial production of l-cysteine involved the asymmetric conversion of dl-2-aminothiazoline-4-carboxylic acid, an intermediate compound in the chemical synthesis of dl-cysteine, to l-cysteine by enzymes from a newly isolated bacterium, Pseudomonas thiazoliniphilum (11). Yamada and Kumagai (13) also described enzymatic synthesis of l-cysteine from beta-chloroalanine and sodium sulfide in which Enterobacter cloacae cysteine desulfhydrase (CD) was used. However, high level production of l-cysteine from glucose with microorganisms has not been studied.Biosynthesis of l-cysteine in wild-type strains of Escherichia coli and Salmonella typhimurium is regulated through feedback inhibition by l-cysteine of serine acetyltransferase (SAT), a key enzyme in l-cysteine biosynthesis, and repression of expression of a series of enzymes used for sulfide reduction from sulfate by l-cysteine (4), as shown in Fig. Fig.1.1. Denk and Böck reported that a small amount of l-cysteine was excreted by a revertant of a cysteine auxotroph of E. coli. In this revertant, SAT encoded by the cysE gene was desensitized to feedback inhibition by l-cysteine, and the methionine residue at position 256 in SAT was replaced by isoleucine (2). These results indicate that it may be possible to construct organisms that produce high levels of l-cysteine by amplifying an altered cysE gene. Although the residue at position 256 is supposedly part of the allosteric site for cysteine binding, no attention has been given to the effect of an amino acid substitution at position 256 in SAT on feedback inhibition by l-cysteine and production of l-cysteine. It is also not known whether isoleucine is the best residue for desensitization to feedback inhibition. Open in a separate windowFIG. 1Biosynthesis and regulation of l-cysteine in E. coli. Abbreviations: APS, adenosine 5′-phosphosulfate; PAPS, phosphoadenosine 5′-phosphosulfate; Acetyl CoA, acetyl coenzyme A. The open arrow indicates feedback inhibition, and the dotted arrows indicate repression.On the other hand, l-cysteine appears to be degraded by E. coli cells. Therefore, in order to obtain l-cysteine producers, a host strain with a lower level of l-cysteine degradation activity must be isolated. In this paper we describe high-level production of l-cysteine plus l-cystine from glucose by E. coli resulting from construction of altered cysE genes. The methionine residue at position 256 in SAT was replaced by other amino acids or the termination codon in order to truncate the carboxy terminus from amino acid residues 256 to 273 by site-directed mutagenesis. A newly derived cysteine-nondegrading E. coli strain with plasmids having the altered cysE genes was used to investigate production of l-cysteine plus l-cystine.  相似文献   

14.
The biosynthetic pathway for the cyanogenic glucoside dhurrin in sorghum has previously been shown to involve the sequential production of (E)‐ and (Z)‐p‐hydroxyphenylacetaldoxime. In this study we used microsomes prepared from wild‐type and mutant sorghum or transiently transformed Nicotiana benthamiana to demonstrate that CYP79A1 catalyzes conversion of tyrosine to (E)‐p‐hydroxyphenylacetaldoxime whereas CYP71E1 catalyzes conversion of (E)‐p‐hydroxyphenylacetaldoxime into the corresponding geometrical Z‐isomer as required for its dehydration into a nitrile, the next intermediate in cyanogenic glucoside synthesis. Glucosinolate biosynthesis is also initiated by the action of a CYP79 family enzyme, but the next enzyme involved belongs to the CYP83 family. We demonstrate that CYP83B1 from Arabidopsis thaliana cannot convert the (E)‐p‐hydroxyphenylacetaldoxime to the (Z)‐isomer, which blocks the route towards cyanogenic glucoside synthesis. Instead CYP83B1 catalyzes the conversion of the (E)‐p‐hydroxyphenylacetaldoxime into an S‐alkyl‐thiohydroximate with retention of the configuration of the E‐oxime intermediate in the final glucosinolate core structure. Numerous microbial plant pathogens are able to detoxify Z‐oximes but not E‐oximes. The CYP79‐derived E‐oximes may play an important role in plant defense.  相似文献   

15.
16.
17.
The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host''s ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.  相似文献   

18.
Two enzymes, l-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter l-ribose from 500 g/liter l-arabinose at pH 7.0, 70°C, and 1 mM Co2+ for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter−1 h−1.l-Ribose, a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, is not abundant in nature (4, 15, 20). l-Ribose has been synthesized primarily from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, and d-mannono-1,4-lactone (1, 13, 20). Recombinant cells containing a NAD-dependent mannitol-1-dehydrogenase produced 52 g/liter l-ribose from 100 g/liter ribitol after fermentation for 72 h (14). However, the volumetric productivity of l-ribose was 26-fold lower than that of the chemical synthetic method starting from l-arabinose (6). l-Ribose isomerase from an Acinetobacter sp., which is most active with l-ribose, showed poor efficiency in the conversion of l-ribulose to l-ribose (9). Recently, l-ribulose was produced with a conversion yield of 19% from the inexpensive sugar l-arabinose using l-arabinose isomerase (AI) from Geobacillus thermodenitrificans (18). l-Ribose has been produced from l-ribulose using mannose-6-phosphate isomerase (MPI) from Bacillus subtilis with a conversion yield of 70% (17). In this study, the production of l-ribose from l-arabinose was demonstrated via a two-enzyme system from G. thermodenitrificans, in which l-ribulose was first produced from l-arabinose by AI and subsequently converted to l-ribose by MPI.The analysis of monosaccharides and the purification and thermostability of AI and MPI from G. thermodenitrificans (2) isolated from compost were performed as described previously (7, 18, 19). The cross-linked enzymes were obtained from the treatment of 0.5% glutaraldehyde (10, 16). The reaction was performed by replacing the reaction solution with 100 g/liter l-arabinose and 1 mM Co2+ every 6 h at 70°C and pH 7.0. The reaction volume of 10 ml contained 5 g of the cross-linked enzymes with 8 U/ml AI and 20 U/ml MPI. One unit of AI or MPI activity, which corresponded to 0.0625 or 2.5 mg protein, respectively, was defined as the amount of enzyme required to produce 1 μmol of l-ribulose or l-ribose, respectively, per min at 70°C, pH 7.0, and 1 mM Co2+. Unless otherwise stated, the reaction was carried out in 50 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) buffer (pH 7.0) in the presence of 1 mM Co2+ at 70°C for 4 h. All experiments were performed in triplicate.The recombinant Escherichia coli ER2566 (New England Biolabs, Ipswich, MA) containing pTrc99A plasmid (Pharmacia Biotech, Piscataway, NJ) and the AI or MPI gene was cultivated in a 7-liter fermentor containing 3 liters of chemically defined medium (11). When the cell mass reached 2 g/liter, 10 g/liter lactose was added for enzyme induction. After 14 h, 40 g/liter cells with 13,400 U/liter of AI or 34 g/liter cells with 630 U/liter of MPI was obtained. The enzyme was purified by heat treatment and Hi-Trap anion-exchange chromatography. The purification yields of AI and MPI were 21 and 78%, respectively, and the levels of purity for the concentrated AI and MPI by gene scanning were 48 and 92%, respectively. Maximum l-ribose production from l-arabinose by AI and by MPI in 10 ml of total volume was observed at pH 7.0, 70°C, and 1 mM Co2+ (data not shown). Half-lives for the two-enzyme system containing 10 mM l-arabinose, 0.2 U/ml AI, and 0.5 U/ml MPI at 60, 65, 70, 75, and 80°C were 1,216, 235, 48, 26, and 12 h, respectively. The use of Co2+ may be disadvantageous, as it is fairly toxic. This problem can be solved by using Mn2+ instead of Co2+. When Mn2+ was used in the reaction with the same amounts of enzymes, the conversion yield was the same as that obtained with Co2+, even though the volumetric productivity was lower than that with Co2+ (data not shown).The effect of the ratio of AI to MPI in the two-step enzymatic production of l-ribose from l-arabinose was investigated by mixing the enzyme solutions (8 U/ml AI and 20 U/ml MPI) to obtain AI/MPI ratios ranging from 10:90 to 90:10 (vol/vol) (Fig. (Fig.1).1). The reactions were run with 300 g/liter l-arabinose. Maximum l-ribose production was observed at a volume ratio of 50:50 of the enzyme solutions. The effects of enzyme concentration on l-ribose production were investigated at the optimal unit ratio (AI/MPI ratio, 1:2.5) with 500 g/liter l-arabinose and AI and MPI concentrations from 0.4 and 1.0 U/ml, respectively, to 9.2 and 23.0 U/ml, respectively (Fig. (Fig.2A).2A). l-Ribose production increased with increasing amounts of enzymes until reaching a plateau at 8 U/ml AI and 20 U/ml MPI. The effect of substrate concentration on l-ribose production was evaluated at l-arabinose concentrations ranging from 15 to 500 g/liter with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.2B).2B). The production of both l-ribose and l-ribulose, an intermediate, increased with increasing substrate level. The results suggest that concentrations of substrate above 500 g/liter l-arabinose might cause the increased production. The conversion yields of l-ribose and l-ribulose from l-arabinose were constant at 32% and 14%, respectively, within an initial concentration of 100 g/liter l-arabinose, indicating that the reactions reached equilibrium at an l-arabinose/l-ribulose/l-ribose ratio of 54:14:32, which was in agreement with the calculated equilibrium (17). However, at l-arabinose concentrations above 100 g/liter, the conversion yields of l-ribose and l-ribulose from l-arabinose decreased with increasing l-arabinose concentration. The l-arabinose/l-ribulose/l-ribose ratio, with an initial l-arabinose concentration of 300 g/liter, was 71:6:23 after 4 h of reaction. To obtain near-equilibrium (54:14:32) at this high concentration of l-arabinose, more effective enzymes are required.Open in a separate windowFIG. 1.Effect of the ratio of AI to MPI on l-ribose production from l-arabinose by the purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose.Open in a separate windowFIG. 2.(A) Effect of enzyme concentration on l-ribose production from l-arabinose at the optimal unit ratio (AI/MPI ratio, 1:2.5). Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose. (B) Effect of l-arabinose concentration on l-ribose production. Symbols: •, l-ribose; ▪, l-ribulose. Data are the means for three separate experiments, and error bars represent standard deviations.A time course reaction of l-ribose production from l-arabinose was monitored for 3 h with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.3).3). As a result, 118 g/liter l-ribose was obtained from an initial l-arabinose concentration of 500 g/liter after 3 h, with a conversion yield of 23.6% and a productivity of 39.3 g liter−1 h−1. Recombinant E. coli containing MDH yielded 52 g/liter l-ribose from an initial ribitol concentration of 100 g/liter after 72 h, with a productivity of 0.72 g liter−1 h−1 (14). The production and productivity obtained in the current study using AI and MPI from G. thermodenitrificans were 2.3- and 55-fold higher, respectively, than those obtained from ribitol and 17- and 21-fold higher than those obtained with the production of l-ribose from l-arabinose using resting cells of recombinant Lactobacillus plantarum (5). The chemical synthetic method is capable of producing 56.5 g/liter l-ribose from 250 g/liter l-arabinose after 3 h, corresponding to a productivity of 18.8 g liter−1 h−1 (6). Still, both the production and productivity of l-ribose using the method described herein were 2.1-fold higher. Thus, the method of production of l-ribose in the present study exhibited the highest productivity and production, compared to other fermentation methods and chemical syntheses.Open in a separate windowFIG. 3.Time course of l-ribose production from l-arabinose by purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose.Several rounds of conversion reusing the cross-linked enzymes were performed (Fig. (Fig.4).4). The immobilized enzymes showed more than 20% conversion of l-ribose from l-arabinose for the 9th batch, and the concentration of l-ribose was reduced to 43% after the 20th batch. These results suggest that the immobilization of enzyme facilitates separation of product and enzyme, and it enables the enzyme to function continuously, as reported previously (3, 8, 12). Thus, the reuse of enzyme by immobilization improves the economic viability of this enzymatic process.Open in a separate windowFIG. 4.Reuse of immobilized AI and MPI from G. thermodenitrificans for l-ribose production from 100 g/liter l-arabinose. Data are the means for three separate experiments, and error bars represent standard deviations.  相似文献   

19.
The property of loose stereochemical control at aldol products from aldolases helped to synthesize multiple polyhydroxylated compounds with nonnatural stereoconfiguration. In this study, we discovered for the first time that some fructose 1,6-diphosphate aldolases (FruA) and tagatose 1,6-diphosphate (TagA) aldolases lost their strict stereoselectivity when using l-glyceraldehyde and synthesized not only l-sorbose but also a high proportion of l-psicose. Among the aldolases tested, TagA from Bacillus licheniformis (BGatY) showed the highest enzyme activity with l-glyceraldehyde. Subsequently, a “one-pot” reaction based on BGatY and fructose-1-phosphatase (YqaB) generated 378 mg/liter l-psicose and 199 mg/liter l-sorbose from dihydroxyacetone-phosphate (DHAP) and l-glyceraldehyde. Because of the high cost and instability of DHAP, a microbial fermentation strategy was used further to produce l-sorbose/l-psicose from glucose and l-glyceraldehyde, in which DHAP was obtained from glucose through the glycolytic pathway, and some recombination pathways based on FruA or TagA and YqaB were constructed in Escherichia coli and Corynebacterium glutamicum strains. After evaluation of different host cells and combinations of FruA or TagA with YqaB and optimization of gene expression, recombinant C. glutamicum strain WT(pXFTY) was selected and produced 2.53 g/liter total ketoses, with a yield of 0.50 g/g l-glyceraldehyde. Moreover, deletion of gene cgl0331, encoding the Zn-dependent alcohol dehydrogenase in C. glutamicum, was confirmed for the first time to significantly decrease conversion of l-glyceraldehyde to glycerol and to increase yield of target products. Finally, fed-batch culture of strain SY14(pXFTY) produced 3.5 g/liter l-sorbose and 2.3 g/liter l-psicose, with a yield of 0.61 g/g l-glyceraldehyde. This microbial fermentation strategy also could be applied to efficiently synthesize other l-sugars.  相似文献   

20.
Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn85, Phe168, and Trp182. The propensity of the cYY tyrosyl to point toward Arg386 was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号