首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sensitivity of mean annual primary production to precipitation   总被引:1,自引:0,他引:1  
In many terrestrial ecosystems, variation in aboveground net primary production (ANPP) is positively correlated with variation in interannual precipitation. Global climate change will alter both the mean and the variance of annual precipitation, but the relative impact of these changes in precipitation on mean ANPP remains uncertain. At any given site, the slope of the precipitation‐ANPP relationship determines the sensitivity of mean ANPP to changes in mean precipitation, whereas the curvature of the precipitation‐ANPP relationship determines the sensitivity of ANPP to changes in precipitation variability. We used 58 existing long‐term data sets to characterize precipitation‐ANPP relationships in terrestrial ecosystems and to quantify the sensitivity of mean ANPP to the mean and variance of annual precipitation. We found that most study sites have a nonlinear, saturating relationship between precipitation and ANPP, but these nonlinearities were not strong. As a result of these weak nonlinearities, ANPP was nearly 40 times more sensitive to precipitation mean than variance. A 1% increase in mean precipitation caused a ?0.2% to 1.8% change in mean ANPP, with a 0.64% increase on average. Sensitivities to precipitation mean peaked at sites with a mean annual precipitation near 500 mm. Changes in species composition and increased intra‐annual precipitation variability could lead to larger ANPP responses to altered precipitation regimes than predicted by our analysis.  相似文献   

3.
Hušek et al. (Popul Ecol 55:363–375, 2013 ) showed that the numerical response of storks to vole prey was stronger in regions where variability in vole density was higher. This finding is, at first sight, in contradiction with the predictions of life-history theory in stochastic environments. Since the stork productivity-vole density relationship is concave, theory predicts a negative association between the temporal variability in vole density and stork productivity. Here, we illustrate this negative effect of vole variability on stork productivity with a simple mathematical model relating expected stork productivity to vole dynamics. When comparing model simulations to the observed mean density and variability of thirteen Czech and Polish vole populations, we find that the observed positive effect of vole variability on stork numerical response is most likely due to an unusual positive correlation between mean and variability of vole density.  相似文献   

4.
Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment.  相似文献   

5.
6.
The relationship between temperature and the developmental rate of organisms is crucial for understanding a variety of biological processes. It is common to use an average‐based index of temperature, for example degree‐days, for examining the relationship; and relatively little attention has been given to the variance of temperature. In this study, we examined the importance of temperature fluctuation on the development of organisms by compiling published studies. Published studies have shown highly variable results where the developmental rate was sometimes higher and sometimes lower under static temperature compared with variable temperature. A laboratory experiment on Megaselia scalaris showed that M. scalaris developed faster under fluctuating temperature than static temperature. We tested an additive model to predict the effect of fluctuating temperature on development and found that the model was inadequate for making quantitative predictions. However, some qualitative predictions, for example temperature fluctuation has a positive or negative effect, can be successfully predicted by the additive model. Our results show that the effect of temperature on developmental rate is not completely additive and average‐based indices such as degree‐days cannot be used when quantitative predictions are required.  相似文献   

7.
Although variation in population sex ratios is predicted to increase the extinction rate of clades with environmental sex determination (ESD), ESD is still seen in a wide array of natural systems. It is unclear how this common sex-determining system has persisted despite this inherent disadvantage associated with ESD. We use simulation modelling to examine the effect of the sex ratio variance caused by ESD on population colonization and establishment. We find that an accelerating function of establishment success on initial population sex ratio favours a system that produces variance in sex ratios over one that consistently produces even sex ratios. This sex ratio variance causes ESD to be favoured over genetic sex determination, even when the mean global sex ratio under both sex-determining systems is the same. Data from ESD populations suggest that the increase in population establishment can more than offset the increased risk of extinction associated with temporal fluctuations in the sex ratio. These findings demonstrate that selection in natural systems can favour increased variance in a trait, irrespective of the mean trait value. Our results indicate that sex ratio variation may provide an advantage to species with ESD, and may help explain the widespread existence of this sex-determining system.  相似文献   

8.
Whole-ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day-to-day weather variability without changing the long-term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day-to-day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non-linearly to environmental drivers. We assessed how these individual-process responses to changes in day-to-day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.  相似文献   

9.
The oriental fruit fly, Bactrocera dorsalis, is a serious insect pest with diverse host range. Furthermore, its invasive and polyphagous behaviors allow this species to expand its habitats. Recent climate change and increase of international trade/transportation facilitate the species expansion from subtropical to temperate regions. Low temperature during winter appears to be the major factor limiting its expansion to temperate zones in the northern hemisphere. This study reports its remarkable ability in rapid cold-hardening (RCH) along with deep supercooling capacity. A brief exposure to 9?°C significantly enhanced cold tolerance of its larvae, pupae, and adults. RCH took 1–2?h for pupae and adults, although it took 24?h for larvae. Supercooling capacity of pupae was also enhanced by RCH treatment from ?13.4?°C to ?16.6?°C. To trace genetic factors associated with RCH, calcium/calmodulin-dependent protein kinase II (Bd-CaMKII) was identified from B. dorsalis and their expression in response to RCH treatment was analyzed. Bd-CaMKII possesses three conserved domains of kinase, calmodulin, and oligomerization. Bd-CaMKII is highly homologous to CaMKII of D. melanogaster and other tephritid flies. Expression levels of Bd-CaMKII in the larvae treated with RCH were significantly increased by approximately 5.5 folds compared to those in control larvae. In addition, expression levels of HSP70 and HSP90 were also increased in response to RCH treatment. These results along with previous studies suggest that cold-hardening of B. dorsalis is functionally associated with its supercooling capacity with increased production of cryoprotectants and HSP through regulatory activity of Bd-CaMKII.  相似文献   

10.
  1. Neochetina eichhorniae is the most widely established biocontrol agent on water hyacinth populations around South Africa. However, some N. eichhorniae populations have failed to adequately control their host population, specifically those exposed to cold conditions.
  2. The aim of this study was to determine whether two climatically distinct populations of N. eichhorniae in South Africa differ in their low‐temperature physiology, which tests whether local‐climate adaptation has occurred.
  3. We estimated weevil CTmin, LLT50, SCP, and SCP mortality using standard approaches. Contrary to expectation based on climatic thermal profiles at the two sites, weevils from the warm locality ((mean ± SE) CTmin = 5.0 °C ± 0.2, LLT50 = ?11.3 °C ± 0.03, SCP = ?15.8 °C ± 0.6) were able to maintain activity and tolerate colder temperatures than the weevils from the colder site (CTmin = 6.0 °C ± 0.5, LLT50 = ?10.1 °C ± 0.1, SCP = ?12.9 °C ± 0.8).
  4. These contradictory outcomes are likely explained by the poor nutrient quality of the plants at the cold site, driving low‐temperature performance variation that overrode any macroclimate variation among sites. The cold site weevils may also have adapted to survive wide‐temperature variability, rather than perform well under very cold conditions. In contrast, the mass‐reared population of insects from the warm site has likely adapted to the consistent conditions that they experience over many years in confinement.
  相似文献   

11.
Elasmobranchs are key to a healthy marine ecosystem but are under threat from human activities, such as destructive fisheries and shark finning. Embryos of oviparous elasmobranchs may be further challenged during development by rising temperatures and falling dissolved oxygen concentrations in their intertidal environment. However, the impact of climate change on survival and growth of oviparous elasmobranchs is still poorly understood. Here, we investigate the effects of temperature and hypoxia on the growth and survival of small-spotted catshark (Scyliorhinus canicula) embryos by incubating eggs in normoxia 15°C, normoxia 20°C, hypoxia 15°C, or hypoxia 20°C. Incubation under the elevated temperature increased the embryonic growth rate, yolk consumption rate and Fulton's condition factor at hatching, whilst decreasing the total length and body mass of newly hatched sharks. Under low oxygen conditions (50% air saturation) the survival rate of S. canicula embryos dropped significantly and the temperature-induced increase in Fulton's condition factor was reversed. Together, these data demonstrate both the individual and compound effects of elevated temperature and hypoxia on the survival and growth during early ontogeny of a ubiquitous, coastal elasmobranch, S. canicula.  相似文献   

12.
Aim Increases in annual mean temperature in the course of current climate change are expected to facilitate mass species migration towards higher altitudes and latitudes. However, this migration may be slowed, or even temporarily reversed, by infrequent and unpredictable episodes of low winter temperatures. Iran experienced a severe cold wave in January and February 2008, giving an opportunity to observe the effects on a large number of woody plant species, many growing further north than their natural ranges. Location The study was carried out in the National Botanical Garden of Iran (35°44′20.06″ N; 51°10′25.66″ E). Method To estimate the damage caused to each individual woody plant in the garden, we adopted the following protocol; at the start of the growing season, at the end of March and beginning of April 2008, all woody species were inspected for damage. In the case of evergreens this took the form of obvious damage to foliage, usually manifested as severe browning. In the case of deciduous species, damage was recognized by the failure of all or part of the plant to produce new leaves; all affected individual plants were labelled. In July all labelled plants were rechecked and, based on whole or partial above‐ground die‐back, a final list of damaged individuals was produced. Results As expected, the majority of native and exotic species introduced from cold temperate habitats showed no freezing injuries. Many woody species in the garden were damaged or killed, despite their previous survival and growth, in many cases for up to 40 years. The majority of taxa (101 out of a total of 145) that suffered freezing‐induced damage were evergreens. Main conclusions The results indicate that despite an increase in mean annual temperature, unpredictable lethal cold waves may retard the expansion of plants towards higher altitudes and latitudes. Broadleaved evergreen species from warm climates were particularly badly affected, with many species suffering high rates of mortality.  相似文献   

13.
There is a growing appreciation that insect distribution and abundance are associated with the limits of thermal tolerance, but the physiology underlying thermal tolerance remains poorly understood. Many insects, like the migratory locust (Locusta migratoria), suffer a loss of ion and water balance leading to hyperkalaemia (high extracellular [K+]) in the cold that indirectly causes cell death. Cells can die in several ways under stress, and how they die is of critical importance to identifying and understanding the nature of thermal adaptation. Whether apoptotic or necrotic cell death pathways are responsible for low-temperature injury is unclear. Here, we use a caspase-3 specific assay to indirectly quantify apoptotic cell death in three locust tissues (muscle, nerves and midgut) following prolonged chilling and recovery from an injury-inducing cold exposure. Furthermore, we obtain matching measurements of injury, extracellular [K+] and muscle caspase-3 activity in individual locusts to gain further insight into the mechanistic nature of chilling injury. We found a significant increase in muscle caspase-3 activity, but no such increase was observed in either nervous or gut tissue from the same animals, suggesting that chill injury primarily relates to muscle cell death. Levels of chilling injury measured at the whole animal level, however, were strongly correlated with the degree of haemolymph hyperkalaemia, and not apoptosis. These results support the notion that cold-induced ion balance disruption triggers cell death but also that apoptosis is not the main form of cell damage driving low-temperature injury.  相似文献   

14.
Rising sea surface temperatures are expected to lead to the loss of phytoplankton biodiversity. However, we currently understand very little about the interactions between warming, loss of phytoplankton diversity and its impact on the oceans' primary production. We experimentally manipulated the species richness of marine phytoplankton communities under a range of warming scenarios, and found that ecosystem production declined more abruptly with species loss in communities exposed to higher temperatures. Species contributing positively to ecosystem production in the warmed treatments were those that had the highest optimal temperatures for photosynthesis, implying that the synergistic impacts of warming and biodiversity loss on ecosystem functioning were mediated by thermal trait variability. As species were lost from the communities, the probability of taxa remaining that could tolerate warming diminished, resulting in abrupt declines in ecosystem production. Our results highlight the potential for synergistic effects of warming and biodiversity loss on marine primary production.  相似文献   

15.
Although individual‐level variation (IV) is ubiquitous in nature, it is not clear how it influences species coexistence. Theory predicts that IV will hinder coexistence but empirical studies have shown that it can facilitate, inhibit, or have a neutral effect. We use a theoretical model to explore the consequences of IV on local and regional species coexistence in the context of spatial environmental structure. Our results show that individual variation can have a positive effect on species coexistence and that this effect will critically depend on the spatial structure of such variation. IV facilitates coexistence when a negative, concave‐up relationship between individuals’ competitive response and population growth rates propagates to a disproportionate advantage for the inferior competitor, provided that each species specialises in a habitat. While greater variation in the preferred habitat generally fosters coexistence, the opposite is true for non‐preferred habitats. Our results reconcile theory with empirical findings.  相似文献   

16.
Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28 days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34 °C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28 °C compared to strain NQAIF116, which had highest growth at 24 °C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher frequency of reported ciguatera illness in populated temperate Australian regions, outside the tropical range of the GBR. Therefore, the findings on salinity and temperature tolerance of two strains of G. carpenteri indicates potential adaptability to different local environmental conditions. These are baseline data for future investigations into the potential southward range expansion of ciguatera-causing dinoflagellates originating from the GBR.  相似文献   

17.
Potato tuber moth (PTM), Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) is an invasive insect pest damaging solanaceous crops. We measured the supercooling point (SCP) and survival at low temperature of different development stages to determine which would be capable of overwintering in the Korean climate and adapting to low temperatures. The SCP ranges from ?23.8°C of the egg to ?16.8 of fourth instar larvae (L4). After short periods of low temperature acclimation in L3 (third instar larva), L4 and prepupae, only the prepupal stage showed a significant lowered SCP from ?20.78 to ?22.37°C. When exposed to different subzero temperature for two hours the egg turned out to be the most cold tolerant stage showing LT50 of ?21.7°C followed by the pupal stage with ?15.89°C. One hundred percent mortality was observed when the larvae or adults were exposed to temperatures below ?15.1°C even for a period as short as 2 h. The results suggest that PTM pupae and egg would be the main overwintering stage in Korea where winter temperature does not drop below ?15°C.  相似文献   

18.
Given the well‐documented fact that human body proportions covary with climate (presumably due to the action of selection), one would expect that the Ipiutak and Tigara Inuit samples from Point Hope, Alaska, would be characterized by an extremely cold‐adapted body shape. Comparison of the Point Hope Inuit samples to a large (n > 900) sample of European and European‐derived, African and African‐derived, and Native American skeletons (including Koniag Inuit from Kodiak Island, Alaska) confirms that the Point Hope Inuit evince a cold‐adapted body form, but analyses also reveal some unexpected results. For example, one might suspect that the Point Hope samples would show a more cold‐adapted body form than the Koniag, given their more extreme environment, but this is not the case. Additionally, univariate analyses seldom show the Inuit samples to be more cold‐adapted in body shape than Europeans, and multivariate cluster analyses that include a myriad of body shape variables such as femoral head diameter, bi‐iliac breadth, and limb segment lengths fail to effectively separate the Inuit samples from Europeans. In fact, in terms of body shape, the European and the Inuit samples tend to be cold‐adapted and tend to be separated in multivariate space from the more tropically adapted Africans, especially those groups from south of the Sahara. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
  • By the year 2100, temperatures are predicted to increase by about 6 °C at higher latitudes and about 3 °C in the tropics. In spite of the smaller increase in the tropics, consequences may be more severe because the climatic niches of tropical species are generally assumed to be rather narrow due to a high degree of climate stability and higher niche specialisation. However, rigorous data to back up this notion are rare.
  • We chose the megadiverse genus Anthurium (Araceae) for study. Considering that the regeneration niche of a species is crucial for overall niche breadth, we focused on the response of germination and early growth through a temperature range of 24 °C of 15 Anthurium species, and compared the thermal niche breadth (TNB) with the temperature conditions in their current range, modelled from occurrence records.
  • Surprisingly, an increase of 3 °C would lead to a larger overlap of TNB of germination and modelled in situ temperature conditions, while the overlap of TNB of growth with in situ conditions under current and future conditions is statistically indistinguishable.
  • We conclude that future temperatures tend to be closer to the thermal optima of most species. Whether this really leads to an increase in performance depends on other abiotic and biotic factors, most prominently potentially changing precipitation patterns.
  相似文献   

20.
Climate response among growth increments of fish and trees   总被引:2,自引:0,他引:2  
Significant correlations were found among the annual growth increments of stream fish, trees, and climate variables in the Ozark region of the United States. The variation in annual growth increments of rock bass (Ambloplites rupestris) from the Jacks Fork River was significantly correlated over 22 years with the ring width of four tree species: white oak (Quercus alba), post oak (Quercus stellata), shortleaf pine (Pinus echinata) and eastern red cedar (Juniperus virginiana). Rock bass growth and tree growth were both significantly correlated with July rainfall and stream discharge. Variations in annual growth of smallmouth bass (Micropterus dolomieu) from four streams were significantly correlated over 29 years (1939–1968) with mean May maximum air temperature but not with tree growth. The magnitude and significance of correlations among growth increments from fish and trees imply that conditions such as topography, stream gradient, organism age, and the distribution of a population relative to its geographic range can influence the climatic response of an organism. The timing and intensity of climatic variables may produce different responses among closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号