首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
2.
3.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

4.
5.
The fragile X syndrome is the result of amplification of a CGG trinucleotide repeat in the FMR1 gene and anticipation in this disease is caused by an intergenerational expansion of this repeat. Although regression of a CGG repeat in the premutation range is not uncommon, regression from a full premutation (>200 repeats) or premutation range (50–200 repeats) to a repeat of normal size (<50 repeats) has not yet been documented. We present here a family in which the number of repeats apparently regressed from approximately 110 in the mother to 44 in her daughter. Although the CGG repeat of the daughter is in the normal range, she is a carrier of the fragile X mutation based upon the segregation pattern of Xq27 markers flanking FMR1. It is unclear, however, whether this allele of 44 repeats will be stably transmitted, as the daughter has as yet no progeny. Nevertheless, the size range between normal alleles and premutation alleles overlap, a factor that complicates genetic counseling.  相似文献   

6.
Fragile X syndrome is an X-linked neurodevelopmental disorder affecting both males and females. Phenotypical characteristics include intellectual deficits, somatic symptoms and behavioural abnormalities caused by loss of the FMRP protein, which leads to destruction of synapses with metabotropic glutamate receptors. The FMR1 gene harbours a CGG repeat in the 5’-untranslated region. The vast majority of fragile-X syndrome patients have a largely expanded CGG repeat (220 or more triplets, designated “full mutation”) and an inactive gene. Full mutation alleles originate upon proliferation of oogonia in the fetal ovary of females who carry a mitotically unstable premutation (59–200 repeats). Premutation carriers have no symptoms of fragile X syndrome; they may, however, experience premature ovarian insufficiency and/or fragile X-associated tremor/ataxia syndrome. The diagnosis of both syndromes requires genetic testing to measure the number of CGG repeats. Prenatal diagnostics of fragile X syndrome is offered to females carrying a pre- or full mutation.  相似文献   

7.
The human FMR1 gene contains a CGG repeat in its 5' untranslated region. The repeat length in the normal population is polymorphic (5-55 CGG repeats). Lengths beyond 200 CGGs (full mutation) result in the absence of the FMR1 gene product, FMRP, through abnormal methylation and gene silencing. This causes Fragile X syndrome, the most common inherited form of mental retardation. Elderly carriers of the premutation, defined as a repeat length between 55 and 200 CGGs, can develop a progressive neurodegenerative syndrome: Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS, FMR1 mRNA levels are elevated and it has been hypothesised that FXTAS is caused by a pathogenic RNA gain-of-function mechanism. We have developed a knock in mouse model carrying an expanded CGG repeat (98 repeats), which shows repeat instability and displays biochemical, phenotypic and neuropathological characteristics of FXTAS. Here, we report further repeat instability, up to 230 CGGs. An expansion bias was observed, with the largest expansion being 43 CGG units and the largest contraction 80 CGG repeats. In humans, this length would be considered a full mutation and would be expected to result in gene silencing. Mice carrying long repeats ( approximately 230 CGGs) display elevated mRNA levels and decreased FMRP levels, but absence of abnormal methylation, suggesting that modelling the Fragile X full mutation in mice requires additional repeats or other genetic manipulation.  相似文献   

8.
The Fragile X mental retardation gene (FMR1) contains a polymorphic trinucleotide CGG repeat in the 5' untranslated region (UTR) of the FMR1 messenger. We have characterized three lymphoblastoid cell lines derived from unrelated male carriers of a premutation that overexpress FMR1 mRNA and show reduced FMRP level compared to normal cells. The analysis of polysomes/mRNPs distribution of mRNA in the cell lines with a premutation shows that the polysomal association of FMR1 mRNA, which is high in normal cells, becomes progressively lower with increasing CGG repeat expansion. In addition, we could detect a very low level of FMR1 mRNA in a lymphoblastoid cell line from a patient with a full mutation. In this case, FMR1 mRNA is not at all associated with polysomes, in agreement with the complete absence of FMRP. The impairment of FMR1 mRNA translation in patients with the Fragile X syndrome with FMR1 premutation is the cause of the lower FMRP levels that leads to the clinical involvement.  相似文献   

9.
The CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1) exhibits remarkable instability upon transmission from mothers with premutation alleles. A collaboration of 13 laboratories in eight countries was established to examine four issues concerning FMR1 CGG-repeat instability among females with premutation (approximately 55-200 repeats) and intermediate (approximately 46-60 repeats) alleles. Our central findings were as follows: (1) The smallest premutation alleles that expanded to a full mutation (>200 repeats) in one generation contained 59 repeats; sequence analysis of the 59-repeat alleles from these two females revealed no AGG interruptions within the FMR1 CGG repeat. (2) When we corrected for ascertainment and recalculated the risks of expansion to a full mutation, we found that the risks for premutation alleles with <100 repeats were lower than those previously published. (3) When we examined the possible influence of sex of offspring on transmission of a full mutation-by analysis of 567 prenatal fragile X studies of 448 mothers with premutation and full-mutation alleles-we found no significant differences in the proportion of full-mutation alleles in male or female fetuses. (4) When we examined 136 transmissions of intermediate alleles from 92 mothers with no family history of fragile X, we found that, in contrast to the instability observed in families with fragile X, most (99/136 [72.8%]) transmissions of intermediate alleles were stable. The unstable transmissions (37/136 [27.2%]) in these families included both expansions and contractions in repeat size. The instability increased with the larger intermediate alleles (19% for 49-54 repeats, 30.9% for 55-59, and 80% for 60-65 repeats). These studies should allow improved risk assessments for genetic counseling of women with premutation or intermediate-size alleles.  相似文献   

10.
11.
12.
13.
Premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 gene (FMR1) are known to contribute to the fragile X phenotype through genetic instability and transmission of full mutation alleles (>200 repeats). There is now mounting evidence that the premutation alleles themselves contribute to clinical involvement, including premature ovarian failure among female carriers and a new tremor/ataxia syndrome among older male carriers. Recent observations also provide direct evidence of dysregulation of the FMR1 gene in the premutation range, which may explain many of the clinical observations.  相似文献   

14.
Fragile X syndrome is the most common cause of inherited mental retardation. The incidence has been estimated to be 1 in 1250 males and 1 in 2000 females. Molecular studies have shown that 95% of fragile X syndrome cases are caused by the expansion of a CGG triplet in the FMR1 gene with hypermethylation of the adjacent CpG island. In spite of the high incidence of this syndrome, a female with both FMR1 genes in the expanded form has never been reported. We present here a female from the Canary Islands presenting mental retardation and attention problems. Molecular analysis has revealed that both of her FMR1 genes have the CGG expansion, one with a premutation and the other with a full mutation. We have studied the CGG repeat in the FMR1 gene in 64 members of her family and detected 33 normal individuals, 14 carriers with the premutation (1 male and 13 females), and 18 individuals with full mutations (8 males and 10 females). The index case illustrates that the possibility of both parents being carriers of the fragile X syndrome premutation should be considered in consanguineous families or in small communities. Received: 4 April 1996 / Revised: 3 May 1996  相似文献   

15.
Fragile X syndrome is the most common cause of hereditary mental retardation. The FMR1 gene, which is involved in fragile X syndrome, contains a polymorphic CGG repeat, which expands in affected patients. Expanding triplet repeats have been shown to be a new type of mutation, termed "dynamic mutation", responsible for more than 12 genetic diseases. These mutations occur as multiple steps rather than as a single event. The first step leads to an unstable allele that then becomes increasingly unstable generally achieving further increases in copy or occasionally contraction. In this report, we describe a fragile X boy with both a hypermethylated full mutation and a deletion of 905 bp encompassing the CGG repeat. The upstream breakpoint is 438 bp 5' to the CGG repeat and the downstream breakpoint is 420 bp 3' of the triplet repeats. The deletion includes the ATG starting codon for translation of the FMR1 gene. This was confirmed by using FMRP immunocytochemistry both on blood smears and hair roots. The deleted region is flanked by a ccgg direct repeat next to the breakpoints; this may have had a critical role in the formation of a secondary DNA structure leading to the deletion.  相似文献   

16.
Analysis of 139 mother-to-offspring transmissions of fragile X CGG triplet repeats revealed that the repeat expansion is enhanced in mother-to-son transmissions compared with mother-to-daughter transmissions. Evidence has been based on analysis of mother-offspring differences in the size of repeat (in kb), as well as on comparisons between proportions of male and female offspring with premutations, and full mutations, inherited from mothers carrying a premutation. Mean difference in the repeat size from mother-son transmissions was 1.45 kb, compared with mother-daughter transmissions of 0.76 kb. The difference is due primarily to a greater proportion of male than female offspring with full mutation from the premutation mothers and also to a higher frequency of reduction in repeat size from mothers to daughters than from mothers to sons. Our findings suggest the possibility of an interaction of the normal X homologue in a female zygote with the FMR1 sequence on the fragile X during replication to account for the lower level of expansion in mother-to-daughter transmissions relative to mother-to-son transmissions.  相似文献   

17.
Pre‐mutation CGG repeat expansions (55–200 CGG repeats; pre‐CGG) within the fragile‐X mental retardation 1 (FMR1) gene cause fragile‐X‐associated tremor/ataxia syndrome in humans. Defects in neuronal morphology, early migration, and electrophysiological activity have been described despite appreciable expression of fragile‐X mental retardation protein (FMRP) in a pre‐CGG knock‐in (KI) mouse model. The triggers that initiate and promote pre‐CGG neuronal dysfunction are not understood. The absence of FMRP in a Drosophila model of fragile‐X syndrome was shown to increase axonal transport of mitochondria. In this study, we show that dissociated hippocampal neuronal culture from pre‐CGG KI mice (average 170 CGG repeats) express 42.6% of the FMRP levels and 3.8‐fold higher Fmr1 mRNA than that measured in wild‐type neurons at 4 days in vitro. Pre‐CGG hippocampal neurons show abnormalities in the number, mobility, and metabolic function of mitochondria at this early stage of differentiation. Pre‐CGG hippocampal neurites contained significantly fewer mitochondria and greatly reduced mitochondria mobility. In addition, pre‐CGG neurons had higher rates of basal oxygen consumption and proton leak. We conclude that deficits in mitochondrial trafficking and metabolic function occur despite the presence of appreciable FMRP expression and may contribute to the early pathophysiology in pre‐CGG carriers and to the risk of developing clinical fragile‐X‐associated tremor/ataxia syndrome.  相似文献   

18.
Recent evidence suggests that early changes in postural control may be discernible among females with premutation expansions (55–200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene at risk of developing fragile X‐associated tremor ataxia syndrome (FXTAS). Cerebellar dysfunction is well described in males and females with FXTAS, yet the interrelationships between cerebellar volume, CGG repeat length, FMR1 messenger RNA (mRNA) levels and changes in postural control remain unknown. This study examined postural sway during standing in a cohort of 22 males with the FMR1 premutation (ages 26–80) and 24 matched controls (ages 26–77). The influence of cerebellar volume, CGG repeat length and FMR1 mRNA levels on postural sway was explored using multiple linear regression. The results provide preliminary evidence that increasing CGG repeat length and decreasing cerebellar volume were associated with greater postural sway among premutation males. The relationship between CGG repeat length and postural sway was mediated by a negative association between CGG repeat size and cerebellar volume. While FMR1 mRNA levels were significantly elevated in the premutation group and correlated with CGG repeat length, FMR1 mRNA levels were not significantly associated with postural sway scores. These findings show for the first time that greater postural sway among males with the FMR1 premutation may reflect CGG repeat‐mediated disruption in vulnerable cerebellar circuits implicated in postural control. However, longitudinal studies in larger samples are required to confirm whether the relationships between cerebellar volume, CGG repeat length and postural sway indicate greater risk for neurological decline.  相似文献   

19.
20.
Fragile X syndrome, the most common inherited form of mental retardation, arises in individuals with more than 200 CGG repeats in the 5 untranslated region of the fragile X mental retardation 1 (FMR1) gene. Although CGG repeat numbers comparable to those found in the normal human population are found in various non-human primates, neither the within-species size variation nor the propensity for expansion of the CGG repeat has been described for any non-human primate species. The allele distribution has now been determined for FMR1 (homologue) CGG repeats of 265 unrelated founder females of Macaca mulatta monkeys. Among 530 X chromosomes, at least 26 distinct repeat lengths were identified, ranging from 16 to 54 CGG repeats. Of these alleles 79% have between 25 and 33 CGG repeats. Detailed examination of the CGG region revealed a conserved G (CGG)2 G interruption, although in no case was an AGG trinucleotide detected. Two animals carried borderline premutation alleles with 54 CGG repeats, within the region of marginal instability for humans. Thus, M. mulatta may be useful as an animal model for the study of fragile X syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号