首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In addition to antidepressant drugs, some neuroleptic (NL) drugs reduce serotonin2 (5-HT2) receptor binding sites after chronic administration. The present study was undertaken to characterize further this property of NL drugs. Scatchard analysis of [3H]spiperone binding in rat cerebral cortex revealed that 21-day treatment with chlorpromazine (CPZ), cis-flupenthixol, and thioridazine reduced 5-HT2 radioligand binding density by 60, 27, and 18%, respectively. The more selective dopamine-D2 antagonists haloperidol and sulpiride were totally ineffective in this regard. No reduction in 5-HT2 ligand binding sites occurred after 1 day of treatment with CPZ but 3-days of treatment was effective and this reduction persisted, although diminished, for at least 72 h after the last injection. cis-Flupenthixol and d-butaclamol were also effective after 3 days of treatment but trans-flupenthixol and l-butaclamol were not, indicating stereo-specificity of the response mechanism. Female rats showed the same response to CPZ as did male rats. Central 5,7-dihydroxytryptamine-induced lesions of 5-HT neurons demonstrated that intact 5-HT neurons were not required for the reduction of 5-HT2 receptor ligand binding by CPZ. Since CPZ has high affinity for many receptors, including alpha 1, histamine1, and muscarinic receptors, the role of these effects in producing 5-HT2 receptor down-regulation was considered by studying the effects of prazosin, atropine, and pyrilamine administration on 5-HT2 radioligand binding. Results indicate that no one of these actions appears to account for the down-regulation of 5-HT2 receptors by CPZ. Several of these effects, in combination, or some unique mechanism, may be involved.  相似文献   

2.
In experimental learned helplessness in mice determined by preliminary inavoidable aversive exposure, activity of tricyclic antidepressants (desipramine, chlorimipramine, amitryptyline), type A MAO inhibitors (pyrazidol), and atypical (zimelidine, trazodon, befuralin) antidepressants as well as that of potential antidepressants (LIS-30, DZK-153) were determined upon chronic administration. The tricyclic compounds, befuralin and DZK-153 removed learned helplessness only after 14 days of administration. The substances with a predominant serotoninomimetic action (zimelidin, trazodon in high doses, pyrazidol, LIS-30) showed high efficacy following 6 days of administration. Single administration of the substances under study did not make it possible to disclose their specific antidepressant activity.  相似文献   

3.
The synthesis of a tritiated derivative of the 5-HT1A photoaffinity probe 8-methoxy-2-[N-n-propyl, N-3-(2-nitro-4-azidophenyl)aminopropyl]aminotetralin ([3H]8-methoxy-3'-NAP-amino-PAT) allowed the use of this probe for attempting the irreversible labeling of specific binding sites in rat brain membranes. Sodium dodecyl-sulfate-polyacrylamide gel electrophoresis of proteins solubilized from hippocampal microsomal membranes that had been incubated with 20 nM [3H]8-methoxy-3'-NAP-amino-PAT under UV light revealed a marked incorporation of 3H label into a 63-kilodalton protein termed PI. As expected of a possible correspondence between PI and 5-HT1A receptor binding sites, 3H labeling by the photoaffinity probe could be prevented by selective 5-HT1A ligands such as 8-hydroxy-2-(di-n-propylamino)tetralin, ipsapirone, buspirone, and gepirone and by N-ethylmaleimide, but not by the 5-HT2 antagonist ketanserin, noradrenaline- and dopamine-related drugs, monoamine oxidase inhibitors, and chlorimipramine. Furthermore, the regional and subcellular distributions of PI were identical to those of specific 5-HT1A binding sites. These results indicated that the binding subunit of the 5-HT1A receptor is a 63-kilodalton protein with a functionally important sulfhydryl group(s).  相似文献   

4.
This study investigated for the first time the potential effects of cis- and trans-resveratrol (c-RESV and t-RESV) on noradrenaline (NA) and 5-hydroxytryptamine (5-HT) uptake by synaptosomes from rat brain, on 5-HT uptake by human platelets, and on monoamine oxidase (MAO) isoform activity. Both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the uptake of [3H]NA and [3H]5-HT by synaptosomes from rat brain and the uptake of [3H]5-HT by human platelets. In both experimental models, t-RESV was slightly more efficient than c-RESV. Furthermore, in synaptosomes from rat brain, the RESV isomers were less selective against [3H]5-HT uptake than the reference drug fluoxetine (0.1-30 microM). On the other hand, both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the enzymatic activity of commercial (human recombinant) MAO isoform (MAO-A and MAO-B) activity, c-RESV being slightly less effective than t-RESV. In addition, both RESV isomers were slight but significantly more selective against MAO-A than against MAO-B. Since the principal groups of drugs used in the treatment of depressive disorders are NA/5-HT uptake or MAO inhibitors, under the assumption that the RESV isomers exhibit a similar behaviour in humans in vivo, our results suggest that these natural polyphenols may be of value as structural templates for the design and development of new antidepressant drugs with two important biochemical activities combined in the same chemical structure: NA/5-HT uptake and MAO inhibitory activity.  相似文献   

5.
5-HYDROXYTRYPTAMINE CATABOLISM IN THE RAT BRAIN DURING ONTOGENESIS   总被引:6,自引:6,他引:0  
Although the serotoninergic innervation is immature in the brains of young rats, the 5-HIAA content is similar to that found in adults. As indicated by the ratio of 5-HIAA to 5-HT levels in the brain stem and the forebrain, the catabolism of the indolamine was more rapid during the first 3 postnatal weeks than in adults. This was contirmed by measuring the total formation of [3H]5-HIAA from [3H]5-HT newly synthesized from L-[3H]tryptophan in brain stem slices of young and adult rats. Electrolytic lesions of midbrain raphe nuclei (B7 and B8) performed on the 5th postnatal day resulted in parallel decreases in brain 5-HT and 5-HIAA levels; this ruled out the possibility that 5-HIAA might be formed from 5-HT synthesized outside serotoninergic neurons, using peripheral 5-hydroxytryptophan. Inhibition of 5-HT storage by reserpine pretreatment did not alter the higher capacity of newborn tissues to catabolize exogenous [3H]5-HT. Therefore, possible differences in 5-HT binding in serotoninergic neurons between newborn and adult rats were not likely to account for the differences in 5-HT catabolism. Estimation of the rate of 5-HIAA efflux from the brain after MAO inhibition did not reveal marked changes with age. The activity of MAO type A, the enzyme involved in 5-HT catabolism, was higher during early life than later on. This could be shown by using 5-HT as substrate and clorgyline as a selective inhibitor. An opposite pattern of development was seen for MAO B, measured with benzylamine as substrate and deprenyl as selective inhibitor. These results suggest that the high 5-HIAA levels found in the brains of young rats can be attributed mainly to the presence of high MAO A activity during early life.  相似文献   

6.
Three monoamine oxidase (MAO) inhibitors--pargyline, clorgyline and deprenyl--as well as the serotonin (5-HT, 5-hydroxytryptamine) releasing agent fenfluramine were administered to developing chick embryos and the effects on [3H]5-HT binding parameters and endogenous 5-HT levels were assessed. Multiple, but not acute, pretreatments with any of the three MAO inhibitors significantly increased 5-HT levels (p less than 0.01) and decreased receptor number (Bmax) to a maximum of 20% (p less than 0.01) without affecting the affinity (KD). When d,l-5-hydroxytryptophan (d,l-5-HTP) was similarly administered there were large increases in 5-HT levels (p less than 0.01), but no significant effects on either Bmax or KD. However, if d,l-5-HTP was co-administered with any of the MAO inhibitors there was a significant (p less than 0.01) enhancement of the MAO inhibitor-induced down-regulation to a maximum of about 40%. Multiple pretreatments with fenfluramine resulted in dose-related decreases in 5-HT levels (p less than 0.01) and Bmax (p less than 0.01) without affecting KD. The largest decrease in [3H]5-HT binding sites inducible by fenfluramine treatment alone was also about 40%. When given in combination with d,l-5-HTP, there was a potentiation of the down-regulation capabilities of fenfluramine at several different dosage levels; however, maximal down-regulation was also limited to 40%. Evidence was presented suggesting that these effects were not due to endogenous 5-HT or drugs remaining in the tissue preparation. The overall evidence implies that merely increasing endogenous 5-HT levels, as by precursor administration, does not necessarily induce down-regulation unless the 5-HT is also made available as functional 5-HT.  相似文献   

7.
The effects of chronic (14 day) administration of the tricyclic antidepressant imipramine, the serotonin-2 (5-HT2) antagonist ketanserin, and the serotonin agonist quipazine on 5-HT2 receptor binding parameters and 5-HT2-mediated behavior were examined in rats with or without prior serotonergic denervation [via 5,7-dihydroxytryptamine (5,7-DHT)] or noradrenergic denervation [via N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)]. Chronic administration of imipramine, ketanserin, or quipazine produced a marked reduction in the number of 5-HT2 binding sites which was accompanied by reductions in the 5-HT2-mediated quipazine-induced head shake response. In animals receiving DSP4 or 5,7-DHT lesions and continuous vehicle treatment, beta-adrenergic receptor binding sites were significantly up-regulated while 5-HT2 receptor binding sites did not change. Imipramine normalized the lesion-induced increases in beta-adrenergic binding observed in DSP4 and 5,7-DHT-lesioned rats but failed to down-regulate beta-adrenergic binding sites below non-lesioned control levels. Chronic imipramine, ketanserin, and quipazine reduced quipazine-induced head shakes and down-regulated 5-HT2 binding sites in rats with noradrenergic denervation. While imipramine, ketanserin, and quipazine all down-regulated 5-HT2 binding sites in animals with serotonergic denervation, only imipramine's ability to reduce quipazine-induced head shakes was attenuated in 5,7-DHT-lesioned rats. The present results suggest that imipramine-induced down-regulation of 5-HT2 receptors may not involve presynaptic 5-HT mechanisms, and imipramine-induced alterations in 5-HT2 sensitivity as reflected in the quipazine-induced head shake may, in part, be influenced by beta-adrenergic receptors.  相似文献   

8.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

9.
We have examined the changes induced by the monoamine oxidase (MAO; EC 1.4.3.4) inhibitors tranylcypromine, clorgyline, and deprenyl on MAO activity and 5-hydroxytryptamine (serotonin, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in rat brain and blood (plasma and whole blood). The decreases of MAO-A activity observed in the liver and lungs after different doses of clorgyline or tranylcypromine correlated significantly (r > 0.80 in all cases) with the decline of plasma 5-HIAA. This was unaffected by 0.25 and 5 mg kg?1 of deprenyl, indicating that 5-HT was deaminated exclusively in the periphery by MAO-A. It is interesting that very potent and significant correlations (r > 0.75) were found between plasma 5-HIAA and MAO-A activity, 5-HIAA and 5-HT content in brain tissue. These results suggest that plasma 5-HIAA can be used confidently as a peripheral indicator of the inhibition of MAO-A in brain. This may represent a favorable alternative to the analysis of 5-HIAA in CSF in psychiatric patients undergoing antidepressant treatment with nonspecific MAO inhibitors or with the new selective MAO-A inhibitors.  相似文献   

10.
We tested a hypothesis that a long-term administration of antidepressants acting through different primary biochemical mechanisms is associated with changes in the platelet serotonin (5-hydroxytryptamine, 5-HT) transport. Laboratory rats were administered norepinephrine reuptake inhibitors (desipramine, maprotiline), selective 5-HT reuptake inhibitor (citalopram), reversible monoamine oxidase inhibitor (moclobemide), and lithium (inositol monophosphatase inhibitor among others) during a 4-week period. Apparent kinetic parameters of platelet 5-HT transport were analyzed. Significant decrease in apparent Michaelis constant (K(M)) was found after the administration of all tested antidepressants except for desipramine. There was certain increase in maximal velocity (V(max)) values following the administration of desipramine, maprotiline, and citalopram; however, the all V(max) changes were not significant. V(max)/K(M) ratio representing limiting permeability at low extracellular concentrations of 5-HT was systematically increased in all the tested drugs, but significant changes were occurred only in maprotiline- and citalopram-treated rats. Adaptive changes in platelet 5-HT transport induced by citalopram were opposite to the acute inhibitory effect of this drug on 5-HT transporter activity. An increase in limiting membrane permeability for 5-HT could be included in the common adaptive effect of the long-term administration of antidepressants that differ in pharmacologic selectivity.  相似文献   

11.
Mirtazapine (MIR) is an antidepressant which enhances noradrenergic and serotonergic 5-HT1A neurotransmission via antagomism of central alpha2-adrenergic autoreceptors and heteroreceptors. The drugs does not inhibit noradrenaline and serotonin reuptake but blocks the 5-HT, and 5-HT3 receptors and has high affinity only for central and peripheral histamine H1 receptors. The present study was aimed at determining whether repeated MIR treatment induced adaptive changes in the alpha1-adrenergic receptors, similar to those reported by us early for tricyclic antidepressants, The experiments were carried out on male mice and rats. MIR was administered at a dose of 10 mg/kg once or repeatedly (twice daily for 14 days). The obtained results showed that MIR administrated repeatedly potentiated the methoxamine- induced exploratory hyperactivity in rats and clonidine-induced aggressiveness in mice, those effects being mediated by alpha1-adrenergic receptors. MIR given repeatedly (but not acutely) increased the binding (Bmax ) of [3H]prazosin to alpha1-adrenergic receptors in cerebral cortex, however, the ability of the alpha1-adrenoceptor agonist phenylephrine to compete for the these sites was not significantly changed. The above results indicate that repeated MIR administration increases the responsiveness of alpha1-adrenergic system (behavioural and biochemical changes), as tricyclics do. However, the question whether the increased functional responsiveness found in the present study is important for the clinical antidepressant efficacy, remains open.  相似文献   

12.
1. The present survey compares the effects of antidepressants and their principal metabolites on reuptake of biogenic amines and on receptor binding. The following antidepressants were included in the study: the tricyclic antidepressants amitriptyline, dothiepin, and lofepramine and the atypical antidepressant bupropion, which all have considerable market shares in the UK and/or US markets; the selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline; and the recently approved antidepressants venlafaxine and nefazodone.2. Amitriptyline has similar in vitro reuptake inhibitory potencies for 5-HT and NA, whereas the metabolite nortriptyline is preferentially a NA reuptake inhibitor. Both amitriptyline and nortriptyline are also 5-HT2 receptor antagonists.3. Dothiepin has equipotent 5-HT and NA reuptake inhibitory activity, whereas northiaden shows a slight selectivity for NA reuptake inhibition. Dothiepin and northiaden are also 5-HT2 receptor antagonists. The slow elimination rate of northiaden (36–46 hr) compared to dothiepin (14–24 hr) suggests that northiaden contributes significantly to the therapeutic effect of dothiepin.4. Lofepramine is extensively metabolized to desipramine. Desipramine plays an important role in the antidepressant activity of lofepramine, as the plasma elimination half-life of lofepramine (4–6 hr) is much shorter than that of desipramine (24 hr). Both compounds are potent and selective inhibitors of NA reuptake.5. The five approved SSRIs, citalopram, fluoxetine, fluvoxamine, paroxetine, and sertraline, are potent 5-HT reuptake inhibitors, and the demethyl metabolites, norfluoxetine, demethylsertraline, and demethylcitalopram, also show selectivity. Paroxetine and sertraline are the most potent inhibitors of 5-HT reuptake, whereas citalopram is the most selective. Fluoxetine is the least selective and the metabolite of fluoxetine, norfluoxetine, is a more selective and more potent 5-HT reuptake inhibitor than the parent compound and has an extremely long half-life (7–15 compared to 1–3 days). Thus the metabolite plays an important role for the therapeutic effect of fluoxetine. Fluoxetine is also a 5-HT2C receptor antagonist. Demethylsertraline is a weaker and less selective 5-HT reuptake inhibitor in vitro than sertraline, but demethylsertraline has a very long half-life (62–104 hr) compared to the parent compound (24 hr) and it might play a role in the therapeutic effects of sertraline. Demethylcitalopram has about a 10 times lower 5-HT reuptake inhibitory potency in vitro than citalopram, and the elimination half-lives are approximately 1.5 and 2 days, respectively.6. Bupropion and hydroxybupropion are weak inhibitors of biogenic amine reuptake. The mechanisms of action responsible for the clinical effects of bupropion are not fully understood, but it has been suggested that both dopaminergic and noradrenergic components play a role and that the hydroxybupropion metabolite contributes significantly to the antidepressant activity.7. Venlafaxine and O-demethylvenlafaxine are weak inhibitors of 5-HT and NA reuptake, and the selectivity ratios are close to one. O-Demethylvenlafaxine is eliminated more slowly than venlafaxine (plasma half-lives of 5 and 11 hr, respectively), and it is likely that it contributes to the overall therapeutic effect of venlafaxin.8. Nefazodone and -hydroxynefazodone are equipotent 5-HT and NA reuptake inhibitors. Both compounds are also 5-HT2 receptor antagonists. Both parent compound and metabolite have short elimination half-lives.  相似文献   

13.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Current antidepressants are clinically effective only after several weeks of administration. Here, we show that serotonin(4) (5-HT(4)) agonists reduce immobility in the forced swimming test, displaying an antidepressant potential. Moreover, a 3 day regimen with such compounds modifies rat brain parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein and neurogenesis in the hippocampus. In contrast, a 3 day treatment with the SSRI citalopram remains devoid of any effect on these parameters. Finally, a 3 day regimen with the 5-HT(4) agonist RS 67333 was sufficient to reduce both the hyperlocomotion induced by olfactory bulbectomy and the diminution of sucrose intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action.  相似文献   

15.
[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

16.
Tricyclic antidepressants and serotonin (5-HT) uptake inhibitors rapidly block uptake sites, or transporters; however, their therapeutic effects are only seen after 2-3 weeks of treatment. Thus, direct blockade of 5-HT and noradrenaline (NA) transporters cannot account entirely for their clinical efficacy, and other long-term changes may be involved. Adult Sprague-Dawley rats were treated for 21 days with daily injections of either desipramine, trimipramine, fluoxetine, or venlafaxine; a fifth group that was used as a control, received daily saline injections. Identified cortical areas, hippocampal divisions and nuclei raphe dorsalis, raphe medialis and locus coeruleus were examined by quantitative autoradiography using either [3H]citalopram to label 5-HT transporters, or [3H]nisoxetine for NA uptake sites. Increases in [3H]nisoxetine binding were found in the cingulate, frontal, parietal, agranular insular, entorhinal and perirhinal cortices as well as in the hippocampal divisions CA1, CA3, dentate gyrus and subiculum, and in nucleus raphe dorsalis of trimipramine-treated animals compared to the control rats. Also, densities of NA transporters decreased in temporal cortex, CA2 and nucleus raphe dorsalis in fluoxetine-treated rats as compared to the controls. Also, there was a decrease in NA transporters in the locus coeruleus of the desipramine-treated animals as compared to the densities measured in the control group. Chronic treatment with desipramine or trimipramine, which do not directly inhibit 5-HT uptake, compared to fluoxetine and venlafaxine, lead to increases in 5-HT transporter densities in cingulate, agranular insular and perirhinal cortices. The present study shows differential region-specific effects of antidepressants on 5-HT and NA transporters, leading to distinct consequences in forebrain areas.  相似文献   

17.
Seasonal rhythmicity in the occurrence of acute depressive episodes and the therapeutic efficacy of light exposure suggest the possible involvement of the pineal gland or other biological oscillators in the pathophysiology of depressive illness. We have performed studies to clarify whether different light/dark (LD) cycle schedules may induce changes in the biochemical targets of antidepressants in the rat CNS. In particular, we have investigated the effect of short- (LD 8:16) or long-day (LD 14:10) photoperiods on different biochemical parameters of serotonergic neurons. A significant increase in the density of [3H]imipramine ([3H]IMI) binding and in the Vmax of 5-[3H]hydroxytryptamine (5-[3H]HT) uptake was found in the hypothalamus of LD 8:16-with respect to LD 14:10-exposed rats, whereas no difference was found in the kinetic properties of postsynaptic 5-HT receptors and in 5-HT metabolism in the hypothalami and cerebral cortices of rats exposed to the two different photoperiods. A seasonal rhythm of [3H]IMI binding sites and 5-HT uptake seems to exist only in certain brain areas, such as the hypothalamus, because no differences were found in the cerebral cortex of LD 14:10- and LD 8:16-accustomed rats. [3H]IMI binding and 5-HT uptake were significantly increased in the hypothalamus of rats accustomed to a light/dark-inverted cycle (DL 10:14) and killed 6 h after the stopping of lighting in comparison to rats exposed to normal LD 14:10 cycles and killed 6 h after the beginning of lighting. Therefore, a circadian modification of the serotonergic presynaptic sites seems to be present and related to light/dark exposure. Because the existence of endogenous compounds able to modulate [3H]IMI binding and 5-HT uptake, other than 5-HT, has been postulated in the mammalian brain, the involvement of these substances in the periodic changes observed could be suggested.  相似文献   

18.
The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D) structure of SERT has not yet been determined, and little is known about the molecular mechanisms of substrate binding and transport, though such information is very important for the development of new antidepressant drugs. In this study, a homology model of SERT was constructed based on the 3D structure of a prokaryotic homologous leucine transporter (LeuT) (PDB id: 2A65). Eleven tryptamine derivates (including 5-HT) and the SSRI (S)-citalopram were docked into the putative substrate binding site, and two possible binding modes of the ligands were found. To study the conformational effect that ligand binding may have on SERT, two SERT–5-HT and two SERT–(S)-citalopram complexes, as well as the SERT apo structure, were embedded in POPC lipid bilayers and comparative molecular dynamics (MD) simulations were performed. Our results show that 5-HT in the SERT–5-HTB complex induced larger conformational changes in the cytoplasmic parts of the transmembrane helices of SERT than any of the other ligands. Based on these results, we suggest that the formation and breakage of ionic interactions with amino acids in transmembrane helices 6 and 8 and intracellular loop 1 may be of importance for substrate translocation.  相似文献   

19.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

20.
D Perici?  D Mück-Seler 《Life sciences》1990,46(19):1331-1342
The mechanisms by which imipramine and dihydroergosine stimulate the 5-HT syndrome in rats and inhibit the head-twitch response in rats and mice were studied. Imipramine- and dihydroergosine-induced stimulation of the 5-HT syndrome was inhibited stereoselectively by propranolol, a high affinity ligand for 5-HT1 receptor sites, but not by ritanserin, a specific 5-HT2 receptor antagonist. (-)-Propranolol potentiated the inhibitory effect of imipramine, but not of dihydroergosine on the head-twitch response, while ritanserin was without effect. Neither imipramine nor dihydroergosine were able to stimulate the 5-HT syndrome in the animals pretreated with p-chlorophenylalanine. As expected, 8-OH-DPAT, a selective 5-HT1A receptor agonist, stimulated, and 5-HT1B agonists CGS 12066B and 1-(trifluoromethylphenyl)piperazine (TFMPP) failed to stimulate the 5-HT syndrome induced in rats by pargyline and 5-HTP administration. A higher dose of ritanserin inhibited the syndrome. While 8-OH-DPAT alone produced all behavioral components of the 5-HT syndrome, dihydroergosine or imipramine alone even at very high doses never produced tremor or a more intensive forepaw padding as seen when these drugs were given in combination with pargyline and 5-HTP. A single administration of (-)-propranolol also inhibited the head-twitch response. This effect lasted in mice longer than after ritanserin administration. In in vitro experiments dihydroergosine expressed approximately twenty-fold higher affinity for 3H-ketanserin binding sites than imipramine. The results suggest that imipramine and dihydroergosine possess two components--one stimulating the 5-HT syndrome in rats by a presynaptic, presumably 5-HT1A-mediated mechanism, and the other inhibiting 5-HT2 binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号