首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
2.

Background

Prostate cancer is the most common cancer among elderly men in the US, and immunotherapy has been shown to be a promising strategy to treat patients with metastatic castration-resistant prostate cancer. Efforts to identify novel prostate specific tumor antigens will facilitate the development of effective cancer vaccines against prostate cancer. Prostate-specific G-protein coupled receptor (PSGR) is a novel antigen that has been shown to be specifically over-expressed in human prostate cancer tissues. In this study, we describe the identification of PSGR-derived peptide epitopes recognized by CD8+ T cells in an HLA-A2 dependent manner.

Methodology/Principal Findings

Twenty-one PSGR-derived peptides were predicted by an immuno-informatics approach based on the HLA-A2 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from either HLA-A2+ healthy donors or HLA-A2+ prostate cancer patients. The recognition of HLA-A2 positive and PSGR expressing LNCaP cells was also tested. Among the 21 PSGR-derived peptides, three peptides, PSGR3, PSGR4 and PSGR14 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and prostate cancer patients. Importantly, these peptide-specific T cells recognized and killed LNCaP prostate cancer cells in an HLA class I-restricted manner.

Conclusions/Significance

We have identified three novel HLA-A2-restricted PSGR-derived peptides recognized by CD8+ T cells, which, in turn, recognize HLA-A2+ and PSGR+ tumor cells. The PSGR-derived peptides identified may be used as diagnostic markers as well as immune targets for development of anticancer vaccines.  相似文献   

3.
Cytotoxic T lymphocytes (Tc) play a central role in cellular immunity against cancers. The cytotoxic potential of freshly isolated tumor-infiltrating lymphocytes (TILs) is usually not expressed. This suggests the possible existence of as yet unspecified and perhaps complex immunosuppressive factors or cytokines that affect the anti-tumor capacity of these TILs in the tumor milieu. In the present study, we demonstrated for the first time that TILs derived from human cervical cancer tissue consist mainly of Th2/Tc2 phenotypes. In vitro kinetic assays further revealed that cancer cells could direct the tumor-encountered T cells toward the Th2/Tc2 polarity. Cancer cells promote the production of IL-4 and down-regulate the production of IFN-gamma in cancer-encountered T cells. The regulatory effects of cervical cancer cells are mediated mainly by IL-10, and TGF-beta plays only a synergistic role. The cancer-derived effects can be reversed by neutralizing anti-IL-10 and anti-TGF-beta Abs. IL-10 and TGF-beta are present in cancer tissue and weakly expressed in precancerous tissue, but not in normal cervical epithelial cells. Our study strongly suggests important regulatory roles of IL-10 and TGF-beta in cancer-mediated immunosuppression.  相似文献   

4.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

5.
It is well known that lymphocytes from patients with advanced-stage cancer have impaired immune responsiveness and that type1 T lymphocyte subsets in tumor bearing hosts are suppressed. Treg have been reported to comprise a subgroup which inhibits T cell mediated immune responses. In the present study, the percentage of Treg, Th1 and Tc1 in the peripheral blood of tumor bearing dogs with or without metastases was evaluated. The percentages of Th1 and Tc1 in dogs with metastatic tumor were significantly less, and that of Treg was significantly greater, than those of dogs without metastatic tumor. The percentage of Treg showed an inverse correlation with that of Th1 and Tc1 in tumor bearing dogs. It was concluded that an increase in Treg in the peripheral blood of dogs with metastatic tumor may induce suppression of tumor surveillance by the Type1 immune response and lead to metastasis of tumor[0][0].[0]  相似文献   

6.
Helicobacter pylori, T cells and cytokines: the "dangerous liaisons"   总被引:1,自引:0,他引:1  
Helicobacter pylori infection is the major cause of gastroduodenal pathologies, but only a minority of infected patients develop chronic and life threatening diseases, as peptic ulcer, gastric cancer, B-cell lymphoma, or autoimmune gastritis. The type of host immune response against H. pylori is crucial for the outcome of the infection. A predominant H. pylori-specific Th1 response, characterized by high IFN-gamma, TNF-alpha, and IL-12 production associates with peptic ulcer, whereas combined secretion of both Th1 and Th2 cytokines are present in uncomplicated gastritis. Gastric T cells from MALT lymphoma exhibit abnormal help for autologous B-cell proliferation and reduced perforin- and Fas-Fas ligand-mediated killing of B cells. In H. pylori-infected patients with autoimmune gastritis cytolytic T cells infiltrating the gastric mucosa cross-recognize different epitopes of H. pylori proteins and H+K+ ATPase autoantigen. These data suggest that peptic ulcer can be regarded as a Th1-driven immunopathological response to some H. pylori antigens, whereas deregulated and exhaustive H. pylori-induced T cell-dependent B-cell activation can support the onset of low-grade B-cell lymphoma. Alternatively, H. pylori infection may lead in some individuals to gastric autoimmunity via molecular mimicry.  相似文献   

7.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

8.
Because of the wide distribution of the survivin Ag in a variety of tumors, we have investigated the survivin-specific CD4+ T cell response in healthy donors and cancer patients. Screening of the entire sequence of survivin for HLA class II binding led to the identification of seven HLA-DR promiscuous peptides, including four HLA-DP4 peptides. All of the peptides were able to prime in vitro CD4+ T cells of eight different healthy donors. The peptide-specific T cell lines were stimulated by dendritic cells loaded with the recombinant protein or with the lysates of tumor cells. The high frequency of responders (i.e., immunoprevalence) was provided by a wide reactivity of multiple peptides. Six peptides were T cell stimulating in at least half of the donors and were close to CD8+ T cell epitopes. HLA-DR molecules were more frequently involved in T cell stimulation than were HLA-DP4 molecules, and hence immunoprevalence relies mainly on HLA-DR promiscuity in the survivin Ag. In two cancer patients a spontaneous CD4+ T cell response specific for one of these peptides was also observed. Based on these observations, the tumor-shared survivin does not appear to be the target of immune tolerance in healthy donors and cancer patients and is a relevant candidate for cancer vaccine.  相似文献   

9.
Peptides deriving from tumor-associated antigens and recognized by patient T cells have been firstly defined in the early 90's, and then used as vaccine in animal models and in cancer patients. Early trials showed a variable, often even high frequency of patients developing peptide-specific T-cell mediated immune response usually accompanied by a lower frequency of clinical response. Modified, long peptides could be synthesized with a higher in vitro binding to the corresponding HLA allele that only seldom translated into a clear improvement in the tumor response. However, we show here that more recent studies of multipeptide-based vaccines resulted in a higher and more robust T cell response causing also a more effective clinical response particularly in melanoma and prostate cancer patients. In this article, we also used some of the recent patents describing different inventions related to pre-clinical and clinical aspects of peptide based vaccines against human solid tumors.  相似文献   

10.
Identifying and quantifying autoaggressive responses in multiple sclerosis (MS) has been difficult in the past due to the low frequency of autoantigen-specific T cells, the high number of putative determinants on the autoantigens, and the different cytokine signatures of the autoreactive T cells. We used single-cell resolution enzyme-linked immunospot (ELISPOT) assays to study, directly ex vivo, proteolipid protein (PLP)-specific memory cell reactivity from MS patients and controls. Overlapping 9-aa-long peptides, spanning the entire PLP molecule in single amino acid steps, were used to determine the frequency and fine specificity of PLP-specific lymphocytes as measured by their IFN-gamma and IL-5 production. MS patients (n = 22) responded to 4 times as many PLP peptides as did healthy controls (n = 22). The epitopes recognized in individual patients, up to 22 peptides, were scattered throughout the PLP molecule, showing considerable heterogeneity among MS patients. Frequency measurements showed that the number of PLP peptide-specific IFN-gamma-producing cells averaged 11 times higher in MS patients than in controls. PLP peptide-induced IL-5-producing T cells occurred in very low frequencies in both MS patients and controls. This first comprehensive assessment of the anti-PLP-Th1/Th2 response in MS shows a greatly increased Th1 effector cell mass in MS patients. Moreover, the highly IFN-gamma-polarized, IL-5-negative cytokine profile of the PLP-reactive T cells suggests that these cells are committed Th1 cells. The essential absence of uncommitted Th0 cells producing both cytokines may explain why therapeutic strategies that aim at the induction of immune deviation show little efficacy in the established disease.  相似文献   

11.
Liu W  Zhai M  Wu Z  Qi Y  Wu Y  Dai C  Sun M  Li L  Gao Y 《Amino acids》2012,42(6):2257-2265
Identification of cytotoxic T lymphocyte (CTL) epitopes from tumor antigens is essential for the development of peptide vaccines against tumor immunotherapy. Among all the tumor antigens, the caner-testis (CT) antigens are the most widely studied and promising targets. PLAC1 (placenta-specific 1, CT92) was considered as a novel member of caner-testis antigen, which expressed in a wide range of human malignancies, most frequently in breast cancer. In this study, three native peptides and their analogues derived from PLAC1 were predicted by T cell epitope prediction programs including SYFPEITHI, BIMAS and NetCTL 1.2. Binding affinity and stability assays in T2 cells showed that two native peptides, p28 and p31, and their analogues (p28-1Y9?V, p31-1Y2L) had more potent binding activity towards HLA-A*0201 molecule. In ELISPOT assay, the CTLs induced by these four peptides could release IFN-γ. The CTLs induced by these four peptides from the peripheral blood mononuclear cells (PBMCs) of HLA-A*02+ healthy donor could lyse MCF-7 breast cancer cells (HLA-A*0201+, PLAC1+) in vitro. When immunized in HLA-A2.1/Kb transgenic mice, the peptide p28 could induce the most potent peptide-specific CTLs among these peptides. Therefore, our results indicated that the peptide p28 (VLCSIDWFM) could serve as a novel candidate epitope for the development of peptide vaccines against PLAC1-positive breast cancer.  相似文献   

12.
Acute exacerbations (AEs) of chronic hepatitis B (CH-B) are accompanied by increased T cell responses to hepatitis B core and e antigens (HBcAg/HBeAg). Why patients are immunotolerant (IT) to the virus and why AEs occur spontaneously on the immunoactive phase remain unclear. The role of HBcAg-specific CD4(+)CD25(+) regulatory T (T(reg)) cells in AE and IT phases was investigated in this study. The SYFPEITHI scoring system was employed to predict MHC class II-restricted epitope peptides on HBcAg overlapping with HBeAg that were used for T(reg)-cell cloning and for the construction of MHC class II tetramers to measure T(reg) cell frequencies (T(reg) f). The results showed that HBcAg-specific T(reg) f declined during AE accompanied by increased HBcAg peptide-specific cytotoxic T lymphocyte frequencies. Predominant Foxp3-expressing T(reg) cell clones were generated from patients on the immune tolerance phase, while the majority of Th1 clones were obtained from patients on the immunoactive phase. T(reg) cells from liver and peripheral blood of CH-B patients express CD152 and PD1 antigens that exhibit suppression on PBMCs proliferation to HBcAg. These data suggest that HBcAg peptide-specific T(reg) cells modulate the IT phase, and that their decline may account for the spontaneous AEs on the natural history of chronic hepatitis B virus infection.  相似文献   

13.
Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/− glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.  相似文献   

14.

Background

Melanoma patients vaccinated with tumor-associated antigens frequently develop measurable peptide-specific CD8+ T cell responses; however, such responses often do not confer clinical benefit. Understanding why vaccine-elicited responses are beneficial in some patients but not in others will be important to improve targeted cancer immunotherapies.

Methods and Findings

We analyzed peptide-specific CD8+ T cell responses in detail, by generating and characterizing over 200 cytotoxic T lymphocyte clones derived from T cell responses to heteroclitic peptide vaccination, and compared these responses to endogenous anti-tumor T cell responses elicited naturally (a heteroclitic peptide is a modification of a native peptide sequence involving substitution of an amino acid at an anchor residue to enhance the immunogenicity of the peptide). We found that vaccine-elicited T cells are diverse in T cell receptor variable chain beta expression and exhibit a different recognition profile for heteroclitic versus native peptide. In particular, vaccine-elicited T cells respond to native peptide with predominantly low recognition efficiency—a measure of the sensitivity of a T cell to different cognate peptide concentrations for stimulation—and, as a result, are inefficient in tumor lysis. In contrast, endogenous tumor-associated-antigen-specific T cells show a predominantly high recognition efficiency for native peptide and efficiently lyse tumor targets.

Conclusions

These results suggest that factors that shape the peptide-specific T cell repertoire after vaccination may be different from those that affect the endogenous response. Furthermore, our findings suggest that current heteroclitic peptide vaccination protocols drive expansion of peptide-specific T cells with a diverse range of recognition efficiencies, a significant proportion of which are unable to respond to melanoma cells. Therefore, it is critical that the recognition efficiency of vaccine-elicited T cells be measured, with the goal of advancing those modalities that elicit T cells with the greatest potential of tumor reactivity.  相似文献   

15.
Current immunization protocols in cancer patients involve CTL-defined tumor peptides. Mature dendritic cells (DC) are the most potent APCs for the priming of naive CD8(+) T cells, eventually leading to tumor eradication. Because DC can secrete MHC class I-bearing exosomes, we addressed whether exosomes pulsed with synthetic peptides could subserve the DC function consisting in MHC class I-restricted, peptide-specific CTL priming in vitro and in vivo. The priming of CTL restricted by HLA-A2 molecules and specific for melanoma peptides was performed: 1) using in vitro stimulations of total blood lymphocytes with autologous DC pulsed with GMP-manufactured autologous exosomes in a series of normal volunteers; 2) in HLA-A2 transgenic mice (HHD2) using exosomes harboring functional HLA-A2/Mart1 peptide complexes. In this study, we show that: 1). DC release abundant MHC class I/peptide complexes transferred within exosomes to other naive DC for efficient CD8(+) T cell priming in vitro; 2). exosomes require nature's adjuvants (mature DC) to efficiently promote the differentiation of melanoma-specific effector T lymphocytes producing IFN-gamma (Tc1) effector lymphocytes in HLA-A2 transgenic mice (HHD2). These data imply that exosomes might be a transfer mechanism of functional MHC class I/peptide complexes to DC for efficient CTL activation in vivo.  相似文献   

16.

Background

A large number of human tumor-associated antigens that are recognized by CD8+ T cells in a human leukocyte antigen class I (HLA-I)-restricted fashion have been identified. Special AT-rich sequence binding protein 1 (SATB1) is highly expressed in many types of human cancers as part of their neoplastic phenotype, and up-regulation of SATB1 expression is essential for tumor survival and metastasis, thus this protein may serve as a rational target for cancer vaccines.

Methodology/Principal Findings

Twelve SATB1-derived peptides were predicted by an immuno-informatics approach based on the HLA-A*02 binding motif. These peptides were examined for their ability to induce peptide-specific T cell responses in peripheral blood mononuclear cells (PBMCs) obtained from HLA-A*02+ healthy donors and/or HLA-A*02+ cancer patients. The recognition of HLA-A*02+ SATB1-expressing cancer cells was also tested. Among the twelve SATB1-derived peptides, SATB1565–574 frequently induced peptide-specific T cell responses in PBMCs from both healthy donors and cancer patients. Importantly, SATB1565–574-specific T cells recognized and killed HLA-A*02+ SATB1+ cancer cells in an HLA-I-restricted manner.

Conclusions/Significance

We have identified a novel HLA-A*02-restricted SATB1-derived peptide epitope recognized by CD8+ T cells, which, in turn, recognizes and kills HLA-A*02+ SATB1+ tumor cells. The SATB1-derived epitope identified may be used as a diagnostic marker as well as an immune target for development of cancer vaccines.  相似文献   

17.
The tumor-infiltrating lymphocytes (TILs) were cultured with interleukin 2 (IL-2) to induce the activated killer cells possessing autologous tumor-killing activity, and analysed their cell surface phenotypes and assessed anti-tumor killing activity. Furthermore, the activated TILs were transferred into 7 patients adoptively resulting in complete remission in a patient with pancreatic cancer and partial remission in another patient with gastric cancer.The cytotoxic activities of activated TILs at 3 weeks-incubation was 72 ± 15, 42 ± 26, 27 ± 21 and 25 ± 15% against K562, Daudi, KATO-III and autologous tumor, respectively. The negative selection method, indicated that the killer cells recognizing autologous tumor cells consisted of CD4- or CD8-positive T lymphocytes and CD16- or CD56-positive natural killer cells. The activated TILs could not only lyse cultured tumor cell lines, but also autologous tumor cells.  相似文献   

18.
Active immunotherapy of cancer requires the availability of a source of tumor antigens. To date, no such antigen associated with lung cancer has been identified. We have therefore investigated the ability of dendritic cells (DC) to capture whole irradiated human lung tumor cells and to present a defined surrogate antigen derived from the ingested tumor cells. We also describe an in vitro system using a modified human adenocarcinoma cell line (A549-M1) that expresses the well-characterized, immunogenic influenza M1 matrix protein as a surrogate tumor antigen. Peripheral blood monocyte-derived DC, when co-cultured with sub-lethally irradiated A549 cells or primary lung tumor cells derived from surgical resection of non-small cell carcinoma (NSCLC), efficiently ingested the tumor cells as determined by flow cytometry analysis and confocal microscopic examination. More importantly, DC loaded with irradiated A549-M1 cells efficiently processed and presented tumor cell-derived M1 antigen to T cells and elicited antigen-specific immune responses that included IFNgamma release from an M1-specific T-cell line, expansion of M1 peptide-specific Vbeta17+ and CD8+ peripheral T cells and generation of M1-specific cytotoxic T lymphocytes (CTL). We also compared DC loaded with irradiated tumor cells to those loaded with tumor cell lysate or killed tumor cells and found that irradiated lung tumor cells as a source of tumor antigen for DC loading is superior to tumor cell lysate or killed tumor cells in efficient induction of antigen-specific T-cell responses. Our results demonstrate the feasibility of using lung tumor cell-loaded DC to induce immune responses against lung cancer-associated antigens and support ongoing efforts to develop a DC-based lung cancer vaccine.  相似文献   

19.
Hu Y  Ma DX  Shan NN  Zhu YY  Liu XG  Zhang L  Yu S  Ji CY  Hou M 《PloS one》2011,6(10):e26522

Background

IL-17-secreting CD8+ T cells (Tc17 subset) have recently been defined as a subpopulation of effector T cells implicated in the pathogenesis of autoimmune diseases. The role of Tc17 and correlation with Th17 cells in the pathophysiology of immune thrombocytopenia (ITP) remain unsettled.

Design and Methods

We studied 47 ITP patients (20 newly-diagnosed and 27 with complete response) and 34 healthy controls. IL-17-producing CD3+CD8+ cells (Tc17) and IL-17-producing CD3+CD8− cells (Th17) were evaluated by flow cytometry and expressed as a percentage of the total number of CD3+ cells. Specific anti-platelet glycoprotein (GP) GPIIb/IIIa and/or GPIb/IX autoantibodies were measured by modified monoclonal antibody specific immobilization of platelet antigens. Peripheral blood mononuclear cells of ITP patients were isolated, incubated in the presence of 0, 0.25, 0.5, or 1 µmol/L of dexamethasone for 72 h, and collected to detect Tc17 and Th17 cells by flow cytometric analysis.

Results

IL-17 was expressed on CD3+CD8− and CD3+CD8+ T cells. The percentages of Tc17 and Th17 cells in newly-diagnosed patients were significantly elevated compared to controls, and Tc17 was decreased after clinical treatment. The Th17∶Tc17 ratio was significantly lower in newly-diagnosed patients compared with controls, and was increased in patients who had complete response. There was a significantly positive correlation between Tc17 and Th17 cells in the control group, but not in the ITP patients. A positive correlation existed between Tc17 and the CD8∶CD4 ratio, as well as CD8+ cells in patients with ITP. The frequencies of Tc17 were marginally higher in autoantibody-negative patients than autoantibody-positive patients. Moreover, both Tc17 and Th17 cell percentages decreased as the concentration of dexamethasone in the culture media increased in ITP patients.

Conclusions

Tc17 and the Th17 subset are involved in the immunopathology of ITP. Blocking the abnormally increased number of Tc17 may be a reasonable therapeutic strategy for ITP.  相似文献   

20.

Background

Various immunotherapeutic strategies for cancer are aimed at augmenting the T cell response against tumor cells. Adoptive cell therapy (ACT), where T cells are manipulated ex vivo and subsequently re-infused in an autologous manner, has been performed using T cells from various sources. Some of the highest clinical response rates for metastatic melanoma have been reported in trials using tumor-infiltrating lymphocytes (TILs). These protocols still have room for improvement and furthermore are currently only performed at a limited number of institutions. The goal of this work was to develop TILs as a therapeutic product at our institution.

Principal Findings

TILs from 40 melanoma tissue specimens were expanded and characterized. Under optimized culture conditions, 72% of specimens yielded rapidly proliferating TILs as defined as at least one culture reaching ≥3×107 TILs within 4 weeks. Flow cytometric analyses showed that cultures were predominantly CD3+ T cells, with highly variable CD4+:CD8+ T cell ratios. In total, 148 independent bulk TIL cultures were assayed for tumor reactivity. Thirty-four percent (50/148) exhibited tumor reactivity based on IFN-γ production and/or cytotoxic activity. Thirteen percent (19/148) showed specific cytotoxic activity but not IFN-γ production and only 1% (2/148) showed specific IFN-γ production but not cytotoxic activity. Further expansion of TILs using a 14-day “rapid expansion protocol” (REP) is required to induce a 500- to 2000-fold expansion of TILs in order to generate sufficient numbers of cells for current ACT protocols. Thirty-eight consecutive test REPs were performed with an average 1865-fold expansion (+/− 1034-fold) after 14 days.

Conclusions

TILs generally expanded efficiently and tumor reactivity could be detected in vitro. These preclinical data from melanoma TILs lay the groundwork for clinical trials of ACT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号