首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
Sixty yeast strains were previously screened for their ability to produce acetic acid, in shaken flask batch culture, from either glucose or ethanol. Seven of the strains belonging to the Brettanomyces and Dekkera genera, from the ARS Culture Collection, Peoria, IL, were further evaluated for acetic acid production in bioreactor batch culture at 28 °C, constant aeration (0.75 v/v/m) and pH (6.5). The medium contained either 100 g glucose/l or 35 g ethanol/l as the carbon/energy source. Dekkera intermedia NRRL YB-4553 produced 42.8 and 14.9 g acetic acid/l from the two carbon sources, respectively, after 64.5 h. The optimal pH was determined to be 5.5. When the initial glucose concentration was 150 or 200 g/l, the yeast produced 57.5 and 65.1 g acetic acid/l, respectively.  相似文献   

2.
The thermotolerant yeast, Kluyveromyces marxianus IMB3, was grown in batch culture at 45°C on cellulose-containing media, supplemented with exogenous cellulase activity. At various stages during fermentation, both substrate and enzyme were added in batch mode and fermentation was continued for 220 h. Ethanol production increased to 20 g/l at 200 h, representing 45% of the maximum theoretical yield. In subsequent experiments, the organism was immobilized in calcium alginate beads and these were used in a similar, batch-fed system at 45°C. Again, fermentation was continued for 220 h and ethanol production increased to its maximum, of 28 g/l, within 100 h and this represented in excess of 60% of the maximum theoretical yield.  相似文献   

3.
Summary Glycerol has been known as an important by-product of wine fermentations improving the sensory quality of wine. This study was carried out with an endogenic wine yeast strain Saccharomyces cerevisiae Kalecik 1. The kinetics of growth and glycerol biosynthesis were analysed at various initial concentrations of glucose, fructose, and sucrose in a batch system. Depending on the determined values of Monod constants, glucose (Ks = 28.09 g/l) was found as the most suitable substrate for the yeast growth. Initial glucose, fructose and sucrose concentrations necessary for maximum specific yeast growth rate were determined as 175 g, 100 l, and 200 g/l, respectively. The yeast produced glycerol at very high concentrations in fructose medium. Fructose was determined as the most suitable substrate for glycerol production while the strain showed low tendency to use it for growth. S. cerevisiae Kalecik 1 could not produce glycerol below 200 g/l initial sucrose concentration. When natural white grape juice was used as fermentation medium, maximum glycerol concentration and dry weight of the yeast were determined as 9.3 g/l and 11.8 g/l, respectively.  相似文献   

4.
In this study 80 wine strains of Saccharomyces cerevisiae were characterized for the production of acetic acid. A significant variability in the production levels was determined among the strains, which produced from a few mg/l to more than 1 g/l. Fifteen strains, differing in acetic acid production, were tested in fermentation of grape musts of different varieties (Aglianico Basilicata, Aglianico Apulia, Cannonau, Bombino nero, Nero d'Avola, Vermentino, Fiano). The results emphasized a great strain variability, but the best strain behaviour was strictly related to the must composition, which is a determinant factor on the expression of the best strain potentiality. Therefore, this study, confirming the high/low production of acetic acid as a strain characteristic, demonstrated also that the inoculated fermentation becomes more advantageous when the starter culture is chosen in relation to the interaction of yeast strain/vine variety.  相似文献   

5.
The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations × three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37°C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37°C. At 30°C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37°C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and ≥2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.  相似文献   

6.
Forty-nine strains of Kloeckera apiculata, isolated from the Friuli region in Italy, were differentiated on the basis of fermentation behaviour and production of secondary compounds in two different grape musts at 18 °C. The isolates exhibited a controlled production of acetic acid, only in a few cases more that 1 g/l. In Moscato grape must the strains exhibited a more uniform behaviour for the production of higher alcohols, ethyl acetate and acetoin than in red grapes. In general, higher levels of ethanol, glycerol and acetic acid were produced in red grape must fermentation. Apiculate strains behaved differently in the two musts, with different metabolic phenotypes dominating the fermentation process. The existence of different metabolic phenotypes correlated with the must composition underlines the need to perform a selection of indigenous apiculate yeasts to obtain the desired consistent products.  相似文献   

7.
A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30?g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5?g/l of furfural stimulated production of xylitol to 77?% of theoretical yield (10?% higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3?g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99?% of theoretical yield (15?% higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5?g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.  相似文献   

8.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

9.
Characteristics of ethanol production by a xylose-fermenting yeast,Pichia stipitis Y-7124, were studied. The sugar consumption rate and specific growth rate were higher in the glucose-containing medium than in the xylose-containing medium. Specific activities of xylose reductase and xylitol dehydrogenase were higher in the medium with xylose than glucose, suggesting their induction by xylose. Maximum specific growth rate and ethanol yield were achieved at 30 g xylose/L concentration without formation of by-products such as xylitol and acetic acid whereas a maximum ethanol concentration was obtained at 130 g/L xylose. Adding a respiratory inhibitor, rotenone, increased a maximum ethanol concentration by 10% compared with the control experiment. In order to evaluate the pattern of ethanol inhibition on specific growth rate, a kinetic model based on Luong’s equations was applied. The relationship between ethanol concentration and specific growth rate was hyperbolic for glucose and parabolic for xylose. A maximum ethanol concentration at which cells did not grow was 33.6 g/L for glucose and 44.7 g/L for xylose.  相似文献   

10.
Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce a large amount of succinic acid in a medium containing glucose, peptone, and yeast extract. In order to reduce the cost of the medium, whey and corn steep liquor (CSL) were used as substrates for the production of succinic acid by M. succiniciproducens MBEL55E. Anaerobic batch cultures of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in the production of succinic acid with a yield of 71% and productivity of 1.18 g/l/h, which are similar to those obtained in a whey-based medium containing yeast extract (72% and 1.21 g/l/h). Anaerobic continuous culture of M. succiniciproducens MBEL55E in a whey-based medium containing CSL resulted in a succinic acid yield of 69% and a succinic acid productivity as high as 3.90 g/l/h. These results show that succinic acid can be produced efficiently and economically by M. succiniciproducens MBEL55E from whey and CSL.  相似文献   

11.
Saccharomyces cerevisiae grows very poorly in dilute acid lignocellulosic hydrolyzate during the anaerobic fermentation for fuel ethanol production. However, yeast cells grown aerobically on the hydrolyzate have increased tolerance for the hydrolyzate. Cultivation of yeast on part of the hydrolyzate has therefore the potential of enabling increased ethanol productivity in the fermentation of the hydrolyzate. To evaluate the ability of the yeast to grow in the hydrolyzate, fed-batch cultivations were run using the ethanol concentration as input variable to control the feed-rate. The yeast then grew in an undetoxified hydrolyzate with a specific growth rate of 0.19 h−1 by controlling the ethanol concentration at a low level during the cultivation. However, the biomass yield was lower for the cultivation on hydrolyzate compared to synthetic media: with an ethanol set-point of 0.25 g/l the yield was 0.46 g/g on the hydrolyzate, compared to 0.52 g/g for synthetic media. The main reason for the difference was not the ethanol production per se, but a significant production of glycerol at a high specific growth rate. The glycerol production may be attributed to an insufficient respiratory capacity.  相似文献   

12.
Aerobic growth of the yeast Brettanomyces intermedius CBS 1943 in batch culture on a medium containing glucose and yeast extract proceeded via a characteristic pattern. In the first phase of growth glucose was fermented to nearly equal amounts of ethanol and acetic acid. After glucose depletion, growth continued while the ethanol produced in the first phase was almost quantitatively converted to acetic acid. Finally, after a long lag phase, growth resumed with concomitant consumption of acetic acid.When the culture was made anaerobic during the first phase, growth, glucose consumption and metabolite production stopped immediately. This Custers effect (inhibition of alcoholic fermentation as a result of anaerobic conditions) was transient. After 7–8 h the culture was adapted to anaerobiosis, and growth and ethanol production resumed. The lag phase could be shortened at will by the introduction of hydrogen acceptors, such as oxygen or acetoin, into the culture. Glycerol production was not observed during any phase of growth. These results support the hypothesis that the Custers effect in this yeast is due to a disturbance of the redox balance, resulting from the tendency of the organism to produce acetic acid, and its inability to restore the balance by production of glycerol.  相似文献   

13.
Anaerobiospirillum succiniciproducens requires expensive complex nitrogen sources such as yeast extract and polypeptone for its growth and succinic acid production. It was found thatA. succiniciproducens was able to grow in a minimal medium containing glucose when supplemented with corn steep liquor (CSL) as the sole complex nitrogen source. The concentration of CSL had a significant effect on the glucose consumption byA. succiniciproducens. When 10–15 g/L of CSL was supplemented, cells were grown to an OD660 of 3.5 and produced 17.8 g/L succinic acid with 20 g/L glucose. These results are similar to those obtained by supplementing yeast extract and polypeptone, thereby suggesting that succinic acid can be produced more economically using glucose and CSL.  相似文献   

14.
The kinetics of batch fermentation during the growth of S. cerevisiae ATCC 36859 was studied in various glucose/fructose mixtures. It was found that the growth is inhibited equally by glucose and fructose even though fructose is not consumed to any large extent by the yeast under the conditions tested here. The inhibition of growth by the substrate and ethanol is represented by linear equations. These equations were combined with the MONOD expression in order to formulate equations for the biomass growth, glucose and fructose consumption and ethanol production. Parameter estimates were obtained by fitting these equations to batch fermentation data and so developing models which indicate that the growth is completely inhibited when 62 g/l ethanol is produced by the yeast, while glucose consumption and ethanol production continue up to an ethanol concentration of 152 g/l. Products containing a high concentration of fructose are best produced by using a high initial biomass concentration.  相似文献   

15.
Summary Ethanol was produced by a strain ofPichia stipitis adapted to an inhibitory acid wood hydrolysate ofPinus radiata. The best ethanol productivity for batch cultures was 0.21 g/l h at 0.7% ethanol. Varying culture conditions increased ethanol concentration to 0.76%, however the productivity decreased to 0.18 g/l h. A decrease in ethanol concentration in the culture fluid was noted late in the batch which suggested ethanol catabolism. Values of kinetic parameters (K m,K s, max, andV max) were evaluated for this system. The use of calcium alginate immobilized cells in a continuous-flow stirred tank reactor lead to enhanced fermentative performance, namely a maximum productivity of 0.27 g/l h and 1.13% ethanol yield. The immobilized cells in continuous flow reactors represent an attractive option for fermenting sugars released by sulphuric acid hydrolysis ofP. radiata wood.  相似文献   

16.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

17.
Summary Chemical mutagenesis with ethyl methanesulfonate (EMS) was used to develop strains ofLactobacillus delbrueckii (ATCC 9649) that tolerated increased lactic acid concentrations while continuously producing the acid. Three mutants (DP2, DP3 and DP4) were compared with wild-typeL. delbrueckii by standing fermentations with different glucose concentrations. All three mutants produced higher levels of lactic acid than the wild-type. In pH-controlled (pH 6.0) stirred-tank-batch fermentations, mutant DP3 in 12% glucose, 1% yeast extract/mineral salt/oleic acid medium produced lactic acid at a rate that was more than 2-times faster than the wild-type. Mutant DP3 also produced 77 g/l lactic acid compared with 58 g/l for the wild-type. Overall, compated with wild-type, the mutants DP2 and DP3 exhibited faster specific growth rates, shorter lag phases, greater lactic acid yields, tolerated higher lactic acid concentrations, and produced as much as 12% lactic acid in 12% glucose, 3% yeast extract/mineral salt/oleic acid medium which required an additional 9% glucose when the residual glucose concentration decreased to 3%. Mutant DP3 was stable for over 1.5 years (stored freeze dried). The strain development procedure was very successful; mutants with enhanced lactic acid-producing capacity were obtained each time the procedure was employed.Journal Paper No. J-14087 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA. Projects No. 2889 and 0178.  相似文献   

18.
The inhibitory effect of the main inhibitors (acetic acid, furfural and 5-hydroxymethylfurfural) formed during steam explosion of wheat straw was studied through ethanol fermentations of model substrates and hydrolysates from wheat straw by Pichia stipitis. Experimental results showed that an increase in acetic acid concentration led to a reduction in ethanol productivity and complete inhibition was observed at 3.5 g/L. Furfural produced a delay on sugar consumption rates with increasing concentration and HMF did not exert a significant effect. Fermentations of the whole slurry from steam exploded wheat straw were completely inhibited by a synergistic effect due to the presence of 1.5 g/L acetic acid, 0.15 g/L furfural and 0.05 g/L HMF together with solid fraction. When using only the solid fraction from steam explosion, hydrolysates presented 0.5 g/L of acetic acid, whose fermentations have submitted promising results, providing an ethanol yield of 0.45 g ethanol/g sugars and the final ethanol concentration reached was 12.2 g/L (10.9 g ethanol/100 g DM).  相似文献   

19.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

20.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号