首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

2.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

3.
Soybean [Glycine max (L.) Merrill] plants that had been subjectedto 15 d of nitrogen deprivation were resupplied for 10 d with1.0 mol m–3 nitrogen provided as NO3, NH4+, orNH4++NO3 in flowing hydroponic culture. Plants in a fourthhydroponic system received 1.0 mol m–3 NO3 duringboth stress and resupply periods. Concentrations of solublecarbohydrates and organic acids in roots increased 210 and 370%,respectively, during stress. For the first day of resupply,however, specific uptake rates of nitrogen, determined by ionchromatography as depletion from solution, were lower for stressedthan for non-stressed plants by 43% for NO3- resupply, by 32%for NH4+ + NO3 resupply, and 86% for NH4+ resupply. Whenspecific uptake of nitrogen for stressed plants recovered torates for non-stressed plants at 6 to 8 d after nitrogen resupply,carbohydrates and organic acids in their roots had declinedto concentrations lower than those of non-stressed plants. Recoveryof nitrogen uptake capacity of roots thus does not appear tobe regulated simply by the content of soluble carbon compoundswithin roots. Solution concentrations of NH4+ and NO3 were monitoredat 62.5 min intervals during the first 3 d of resupply. Intermittent‘hourly’ intervals of net influx and net effluxoccurred. Rates of uptake during influx intervals were greaterfor the NH4+ -resupplied than for the NO3 -resuppliedplants. For NH4+ -resupplied plants, however, the hourly intervalsof efflux were more numerous than for NO3 -resuppliedplants. It thus is possible that, instead of repressing NH4+influx, increased accumulation of amino acids and NH4+ in NH4+-resupplled plants inhibited net uptake by stimulation of effluxof NH4+ absorbed in excess of availability of carbon skeletonsfor assimilation. Entry of NH4+ into root cytoplasm appearedto be less restricted than translocation of amino acids fromthe cytoplasm into the xylem. Key words: Ammonium, nitrate, nitrogen-nutrition, nitrogen-stress, soybean  相似文献   

4.
From compartmental analysis of 15N elution measurements, concentrationsand fluxes of NH+4 and NO3 were estimated for corticalcells in excised root segments, when bathed in a complete nutrientsolution, in which 20 mol m–3 NH4+ or NO3 werethe single N sources. The results were compared with those fornutrient solution containing 20 mol m–3 NH4NO3. No nitratereductase activity was detected in the roots but rapid assimilationof NH4+ occurred, due to glutamine synthetase activity. Theefflux curves for NH4+, on a 'µg 15N remaining againsttime' basis, deviated from the criteria determining conformityto first order kinetics, since the slowest rate constant wasan order of magnitude lower than that exhibited by the curvefor efflux versus time. The data were transformed to conformto the appropriate criteria, revealing a large slowly exchangingpool equated with assimilated NH4+. The presence of NO3had little effect on NH4+ uptake and exchange, but NH4+ suppressedNOj uptake and reduced exchange across plasmalemma and tonoplast.It was established that NH4+ absorption was an active process.However, NH4+ entering and leaving the vacuole was overestimated,since the flux equation used did not differentiate between total15NH4 influx at the plasmalemma and that at the tonoplast, afterassimilation. The only active NO3 transfer was influxat the plasmalemma. The results were compared with those ofothers using13N and 36C1O3 analogues to measure NH4+ and NO3fluxes in cereal roots. Key words: Ammonium, nitrate, compartmental analysis, 15N, active transport  相似文献   

5.
The Uptake of Gaseous Ammonia by the Leaves of Italian Ryegrass   总被引:5,自引:0,他引:5  
Lockyer, D. R. and Whitehead, D. C. 1986. The uptake of gaseousammonia by the leaves of Italian ryegrass.—J. exp. Bot.37: 919–927. Plants of Italian ryegrass (Lolium multiflorum Lam.) grown insoil with two rates of added 15N-labelled nitrate were exposed,in chambers, for 40 d to NH3 in the air at concentrations of16, 118 and 520 µg m–3. At the highest concentrationof NH3, this source provided 47?3% of the total nitrogen inplants grown with the lower rate of nitrate addition (100mgN kg–1 dry soil) and 35?2% with the higher rate (200mgN kg–1 dry soil) At the intermediate concentration ofNH3, the contributions to total plant N were 19?6% and 10?8%,respectively, at low and high nitrate while, at the lowest concentrationof NH3, they were 5?1% and 32%. Most of the N derived from theNH3 remained in the leaves, but some was transported to theroots. The amount of N derived from the NH3 that was presentin the leaves was not reduced by washing the leaves in waterat pH 5?0 before harvesting, indicating that the N was assimilatedby the plant and not adsorbed superficially. Rates of uptakeof NH3 per unit leaf area ranged from 1?7 µg dm–2h–1 at a concentration of 16 µg m–3 to 29?0µg dm–2 h–1 at a concentration of 520 µgm–3 and with the lower rate of nitrate addition. Increasingthe supply of nitrate to the roots slightly reduced the rateof uptake of NH3 per unit leaf area. Uptake of N from the higherrate of nitrate was reduced at the highest concentration ofNH3 in the air. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

6.
We have examined the long-term effects of NO3 concentrationson NO3 (15NO3) fluxes and cellular pool sizesin roots of intact 30-d-old wheat (Triticum aestivum cv. Courtot)grown hydroponically. Compartmental analysis was performed understeady-state conditions at five different levels of NO3concentration (from 0.1 up to 5 mol m–3 taking into accountmetabolism and secretion into the xylem (Devienne et al., 1994).Nitrate and reduced nitrogen levels in the tissues were largelyindependent of external NO3 concentration although below1.5 mol m–3 NO3; concentration limited plant growth.In the chamber, marked diurnal variations in net uptake occurredand, in the light, higher NO3 concentrations yieldedhigher NO3 uptake rates. After transfer of the plantsto the laboratory, the increase in net uptake linked to elevationof NO3; concentrations was even larger (from 0.1 to 8.8µmolh–1 g–1 FW) as a result of a marked increase (x10–11) in the unidirectional influx at the plasmalemmawhile NO3 efflux was less enhanced (x 4–5). Underthese conditions, influx into the vacuole was also higher (x2–4) while efflux from the vacuole was little affected(x 1–3). NO3 concentrations within the cell compartmentswere estimated under the clas sical assumptions. The vacuolarconcentration was a little modified by NO3 availabilitywhereas that in the cytosol increased from about 10 mol m–3to about 20 mol m–3 indicating that (1) the absolute valuefor the cytosol was high and (2) it displayed only a small increasedespite very large changes in NO3 fluxes. NO3distribution within the cells did not seem to involve an activeaccumulation of NO3 in the vacuole. Key words: Wheat, ion transport, nitrate, 15N, compartmentation  相似文献   

7.
Experiments with simulated swards of perennial ryegrass (Loliumperenne L.) grown in flowing nutrient solution with NO3- heldat 0.1 mg N I–1 show that the rate of NO3- uptake wasrelated to diurnal, day-to-day, and seasonal changes in radiation.In summer the diurnal variation in NO3-uptake ranged from 25to 50 mg N m–2 h–1 and the day-to-day variationranged from 500 to 1500 mg N m–2 d–1. Mean dailyrates of uptake over 12 d periods in summer and in winter averaged908 and 44 mg N m–2, respectively. The pattern of NO3-uptake followed that of CO2 flux with the maximum rate of theformer occurring 5 or 6 h after the maximum CO2 influx. Afterdefoliation, NO3- uptake was severely curtailed for 2 d concomitantwith a very small influx of CO2. Analysis of the changes thatoccurred in the rate of NO3- uptake immediately after the switchingon or off of artificial light suggests that two reversible processesmay be involved in the relation between NO3-uptake and radiation,one with a longer and the other with a shorter time constant.  相似文献   

8.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

9.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

10.
Experiments were conducted to investigate the effect of concentrationof NH4+ in nutrient solution on root assimilation of NO3and to determine whether the NH4+NO3 interaction wasmodified in the presence of K+. Dark-grown, detopped corn seedlings(cv. Pioneer 3369A) were exposed for 8 h to 0.15 mM Ca(NO3)2and varying concentrations of (NH4)2SO4 in the absence or presenceof 0.15 mM K2SO4. The accelerated phase of NO3 uptakeappeared most sensitive to restriction by additions of 0.15mM (NH4)2SO4. In the absence of K+, the restriction increasedonly slightly even when solution (NH4)2SO4, was increased from0.15 mM to 12.5 mM which was accompanied by an increase of NH4+in the tissue from about 7.0 to 35 µmol g–1 fr.wt. of root. Increasing concentrations of solution NH4+ progressivelyinhibited net K+ uptake. At the highest solution NH4+ concentrations,there was an initial net efflux of K+ and no net influx occurredduring the treatment period. The severity of the NH4)SO4 restrictionof NO3 uptake was moderated considerably in the presenceof K+ as long as a net influx of K+ occurred. However, net influxof K+ was not associated with alteration of NH4+ uptake, assimilation,or accumulation in the root tissue. The lack of correlationbetween the severity of restriction of NO3 uptake andendogenous NHJ suggested the restriction resulted from an effectexerted by exogenous NH4+ which tended to saturate at lowersolution NHJ concentrations or by inhibitory factors generatedduring assimilation of NH4+. Several mechanisms were postulatedto account for the moderating influence of K+. In all experiments,root NO3 reduction was restricted by the presence ofambient NH4+. The quantitative decreases in reduction tendedto be less than decreases in NO3 uptake and therefore,could result from inhibition solely of uptake with subsequentlimitation in availability of substrate for the reduction process,but the possibility of a direct effect on reduction could notbe excluded.  相似文献   

11.
Whitehead, D. C. and Lockyer, D. R. 1986. The influence of theconcentration of gaseous ammonia on its uptake by the leavesof Italian ryegrass, with and without an adequate supply ofnitrogen to the roots.—J. exp. Bot. 38: 818–827. Plants of Italian ryegrass (Lolium multiflorum Lam.) were grownin pots of soil with two rates of 15N-labclled nitrate, oneproviding adequate, and the other less than adequate, N formaximum growth. After 25 d in a controlled environment cabinet,the plants were transferred to chambers and exposed for 33 dto NH3in the air at one of nine concentrations ranging from14 to 709 µg NH3 m–3. Increasing the concentrationof NH3 in the air increased the dry weight of the shoots ofplants grown at the lower but not the higher rate of nitrate.The content of total N in the plant shoots (% dry weight) waslinearly related to NH3 concentration; at 709 µg NH3 andin both sets of plants it was more than double the content at14 µg NH3 m–3. Calculations, based on 15N enrichment,indicated that the amount of N taken up from the NH3 per unitleaf area increased linearly with increasing concentration ofNH3 in the air uptake (µg dm–2 h–1) = 0.1009xat the lower rate of nitrate and 0-0829x at the higher rateof nitrate, where x is the concentration of NH3 in the air expressedas µg NH3m–3. The proportion of the total plant N that was derived from theNH3 ranged from 4?0% at a concentration of 14 µg NH3 m–3with the higher rate of nitrate addition to 77?5% at a concentrationof 709 µg m–3 with the lower rate of nitrate addition.The proportions of the total N in the water-insoluble proteinof the leaf tissue that were derived from nitrate and gaseousNH3 were similar to the proportions in the whole leaf material. Key words: Ammonia, nitrogen, leaf sorption, Lolium multiflorum  相似文献   

12.
In non-nodulated soybean [Glycine max (L.) Merrill cv. Ransom]plants that were subjected to 15 d of nitrogen deprivation inflowing hydroponic culture, concentrations of nitrogen declinedto 1.0 and 1.4mmol Ng–1 dry weight in shoots and roots,respectively, and the concentration of soluble amino acids (determinedas primary amines) declined to 40µmol g–1 dry weightin both shoots and roots. In one experiment, nitrogen was resuppliedfor 10 d to one set of nitrogen-depleted plants as 1.0 mol m–3NH4+ to the whole root system, to a second set as 0.5 mol m–3NH4+ plus 0.5 mol m–3 NO3 to the whole root system,and to a third set as 1.0 mol m–3 NH4+ to one-half ofa split-root system and 1.0 mol m–3 NO3 to theother half. In a second experiment, 1.0 mol m–3 of nitrogenwas resupplied for 4 d to whole root systems in NH4+ : NO3ratios of 1:0, 9:1, and 1:1. Nutrient solutions were maintainedat pH 6.0. When NH4+ was resupplied in combination with NO3 to thewhole root system in Experiment I, cumulative uptake of NH4+for the 10 d of resupply was about twice as great as when NH4+was resupplied alone. Also, about twice as much NH4+ as NO3was taken up when both ions were resupplied to the whole rootsystem. When NH4+ and NO3 were resupplied to separatehalves of a split-root system, however, cumulative uptake ofNH4+ was about half that of NO3. The uptake of NH4+,which is inhibited in nitrogen-depleted plants, thus is facilitatedby the presence of exogenous NO3, and the stimulatingeffect of NO3 on uptake of NH4+ appears to be confinedto processes within root tissues. In Experiment II, resupplyof nitrogen as both NH4+ and NO3 in a ratio of either1:1 or 9:1 enhanced the uptake of NH4+. The enhancement of NH4+uptake was 1.8-fold greater when the NH4+: NO3-resupplyratio was 1:1 than when it was 9:1; however, only 1.3 timesas much NO3 was taken up by plants resupplied with the1 :1 exogenous ratio. The effect of NO3 on enhancementof uptake of NH4+ apparently involves more than net uptake ofNO3 itself and perhaps entails an effect of NO3uptake on maintenance of K+ availability within the plant. Theconcentration of K+ in plants declined slightly during nitrogendeprivation and continued to decline following resupply of nitrogen.The greatest decline in K+ concentration occurred when nitrogenwas resupplied as NH4+ alone. It is proposed that decreasedavailability of K+ within the NH4+-resup-plied plants inhibitedNH4+ uptake through restricted transfer of amino acids fromthe root symplasm into the xylem. Key words: Ammonium, Glycine max, nitrate, nitrogen-nutrition, nitrogen stress, split-root cultures  相似文献   

13.
The use of chlorate as an analogue for NO3 during nitrateuptake into Chara corallina cells has been investigated. NO3inhibits 36C1O3 influx into Chara over the concentrationrange 0–1000 mmol m–3. Lineweaver-Burke plots ofthe data are characteristic of competitive inhibition by NO–3in the low concentration range (0–300 mmol m–3 ClO3)and apparent KINO3 is 140 mmol m–3 which is of a similarorder of magnitude as apparent KmCIO3- 180 mmol m–3. Athigher substrate concentrations the inhibition by NO3was not characteristic of competitive or uncompetitive inhibition. 36C1O3/NO3 influx was dependent on K+ and Ca2+in the external medium and inhibited by FCCP. NO3 pretreatmentor N starvation increased subsequent 36C1O3/NO3influx into Chara. A comparison between rates of net NO3uptake and 36C1O3/NO3 influx supported the previoushypothesis that NO3 efflux is an important componentin the determination of overall uptake rates. Key words: Nitrate, Chara, 36CIO3  相似文献   

14.
Ricinus communis L. var. Gibsonii was grown in Long Ashton nutrientmedium with either 12mol m–3 NO3 or 8.0 mol m–3NH+4 as N source. Two plants from each N treatment were harvestedtwice a week and analysed for C, N, P, S, NO3, SO2–4ClK+Na+, Ca2+ Mg2+ and ash alkalinity. Statistical analysis of thedata showed that the effect of age and N source was differentfor the chemical variables analysed. Thus [Na+] was unaffectedby age or N source, and for both N sources [Mg2+] started atthe same level and decreased at the same rate as the plantsmatured. With NH+4 as N source, [SO2–4] was higher thanwith NO3, but did not alter with age. The concentrations,in mmol g–1 dry wt, of C, organic N, K+ and Ca2+ weredifferent for the two N sources, but the levels of these variablesaltered with age in the same way for both N sources; i.e. therewas no age x N interaction. In the case of P, NO3, Cl and COO, however,age-related variations were different for the two N sources.It is concluded, inter alia, that [Na+] is determined by external[Na+] alone, and that K+, Ca2+ and Cl are the inorganicions actively involved in charge balance during ion uptake bythe roots. Key words: Ontogeny, Chemical composition, Plant nutrition  相似文献   

15.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

16.
The isotope 15N was used to examine nitrogen dynamics in LakesFryxell and Vanda, two permanently ice-covered Antarctic lakes.Half-saturation constants for NH4+. uptake in the shallow watersof both lakes were <10 µg N l–1; uptake kineticexperiments on populations forming the deep-chlorophyll layersof these lakes showed zero-order kinetics and could not be fittedwith the Michaelis-Menten equation. Elevated uptake within thefirst few minutes following pulses of NH4+. and NO3 occurredin both lakes. NH4+ regeneration, determined from isotope dilutionexperiments, exceeded uptake at 4.6 m in Lake Fryxell, was lessthan uptake at 9 m in Lake Fryxell and was equal to uptake at10 m in Lake Vanda under the experimental conditions. NO3uptake was suppressed by NH4+ levels as low as 2 µg NH4+-N l–1 in Lake Fryxell; the suppression was strongestin the near-surface populations. Substrate-saturated C:N uptakeratios (g:g) in Lake Fryxell decreased from 8.4 near the surfaceto 1.8 at the bottom of the trophogenic zone. Overall, the nitrogendynamics in these lakes are similar to other lakes and the openocean in that biological productivity during the austral summeris supported by regenerated nutrients.  相似文献   

17.
Rhizosolenia mats conduct extensive vertical migrations in theoligotrophic central North Pacific (cNP) gyre that permit thesediatoms to acquire nitrate at depth and return to the surfacefor photosynthesis. The ultimate fate of this N within the ecosystemis unknown, but may include remineralization by grazing, lossto depth by sinking biomass, or N excretion by Rhizosoleniamats. Direct release of N by mats into the mixed layer wouldrepresent an upward biological pump that circumvents the diffusionbarriers and nutrient sinks at the base of the oceanic euphoticzone. We examined Rhizosolenia mat N release along a transect(28–31° N) in the summer of 2002 (Hawaii to California)and 2003 (Hawaii to west of Midway Island) using sensitive fluorometricand chemiluminescence methods. Nitrate, NO2 and NH4+release was determined. Nitrate and NH4+ release by the matsoccurred in both 2002 (22.84 ± 6.04 and 3.69 ±1.74 nmol N µg–1 Chl a h–1, respectively)and 2003 (23.74 ± 3.54 and 3.60 ± 0.74 nmol Nµg–1 Chl a h–1, respectively). Nitrite releaseonly occurred in the 2003 summer period but occurred in bothyears when Fe chelators were added. Fv/Fm values decreased westwardin 2003 suggesting a gradient of increasing physiological stresstowards the west. The various physiological measures are consistentwith concurrent Fe stress; however, other possibilities exist.Nitrate excretion was the dominant form of N release in bothyears and provided a substantial addition to the ambient nitratepool in the mixed layer. Rhizosolenia mat nitrate release suppliesat least 4–7% of the nitrate pool on daily basis, andpossibly as much as 27%. Rhizosolenia mats are part of a largephytoplankton community that appears to migrate, and rates couldbe significantly higher. Literature reports suggest little orno nitrification in the upper euphotic zone, and thus biologicaltransport and release of nitrate may be a major source to thisregion. This N release is uncoupled from upward CO2 transportand, like N2 fixation, provides a component of the N pool availablefor net carbon removal.  相似文献   

18.
36C1O3/NO3 influx into Chara cells was found to be sensitiveto pHo and a maximum was found at pHo = 4.5. By contrast 14Cmethylamine influx into Chara showed a maximum at pHo = 8.5,and at this pHo influx rates were about 150 times higher thanrates of 36C1O3/NO3 influx. However, at pHo = 4.5, 36C1O3/NO3influx rates were, in some cases, comparable with rates of 14Cmethylamine influx. 36C1O3/NO3 influx into Chara cells was stimulatedby Rb +, K+, Na +, and NH4+, but not by Cs+ or Li +. NO3 andCl reduced 14C methylamine influx into Chara by 30%. NH4+ causedvery considerable inhibition of 14C methylamine influx intoChara, but had no effect on 36C1O3/NO3 influx in the presenceof K +. Net NO3 uptake into Chara was completely prevented byNH4+ even at relatively low NH4+ concentrations (25 mmol m –3).This latter effect was reversed by diethylstilbestrol (DES).Evidence is presented for the stimulation of NO3 efflux by NH4+as the mechanism responsible for the immediate effects of NH4+on net NO3 uptake into Chara cells. Key words: Chara, 14C methylamine, 36ClO3, pH  相似文献   

19.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

20.
Allen, S. and Smith, J A. C. 1986. Ammonium nutrition in Ricinuscommunis: its effect on plantgrowth and the chemical compositionof the whole plant, xylem and phloem saps.—J. exp. Bot.37: 1599–1610. The growth and chemical composition of Ricinus communis cultivatedhydroponically on 12 mol m – 3 NO3-N were comparedwith plants raised on a range of NH4+-N concentrations. At NH4+-Nconcentrations between 0·5 and 4·0 mol m–3,fresh- and dry-weight yields of 62-d-old plants were not significantlydifferent from those of the NO3-N controls. Growth wasreduced at 0·2 mol m–3 NH4+-N and was associatedwith increased root. shoot and C: organic N ratios, suggestingthat the plants were N-limited. At 8·0 mol m–3NH4+-N, growth was greatly restricted and the plants exhibitedsymptoms of severe ‘NH4+ toxicity’. Plants growingon NH4+-N showed marked acidification of the rooting medium,this effect being greatest on media supporting the highest growthrates. Shoot carboxylate content per unit dry weight was lower at mostNH4+-N concentrations than in the NO3-N controls, althoughit increased at the lowest NH4+-N levels. Root carboxylate contentwas comparable on the two N sources, but also increased substantiallyat the lowest NH4+-N levels. N source had little effect on inorganic-cationcontent at the whole-plant level, while NO3 and carboxylatewere replaced by Cl as the dominant anion in the NH4+-N plants.This was reflected in the ionic composition of the xylem andleaf-cell saps, the latter containing about 100 mol m–3Cl in plants on 8·0 mol m–3 NH4+. Xylem-saporganic-N concentration increased more than threefold with NH4+-N(with glutamine being the dominant compound irrespective ofN source) while in leaf-cell sap it increased more than 12-foldon NH4+-N media (with arginine becoming the dominant species).In the phloem, N source had little or no effect on inorganic-cation,sucrose or organic-N concentrations or sap pH, but sap fromNH4+-N plants contained high levels of Cl and serine. Collectively, the results suggested that the toxic effects ofhigh NH4+ concentrations were not the result of medium acidification,reduced inorganic-cation or carboxylate levels, or restrictedcarbohydrate availability, as is commonly supposed. Rather,NH4+ toxicity in R. communis is probably the result of changesin protein N turnover and impairment of the photorespiratoryN cycle. Key words: Ricinus, ammonium nutrition, nitrate, whole-plant composition, xylem, Phloem, amino acids, carboxylate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号