首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.  相似文献   

2.
The cholesterol trafficking defect in Niemann-Pick type C (NPC) disease leads to impaired regulation of cholesterol esterification, cholesterol synthesis, and low density lipoprotein receptor activity. The ATP-binding cassette transporter A1 (ABCA1), which mediates the rate-limiting step in high density lipoprotein (HDL) particle formation, is also regulated by cell cholesterol content. To determine whether the Niemann-Pick C1 protein alters the expression and activity of ABCA1, we determined the ability of apolipoprotein A-I (apoA-I) to deplete pools of cellular cholesterol and phospholipids in human fibroblasts derived from NPC1+/+, NPC1+/-, and NPC1-/- subjects. Efflux of low density lipoprotein-derived, non-lipoprotein, plasma membrane, and newly synthesized pools of cell cholesterol by apoA-I was diminished in NPC1-/- cells, as was efflux of phosphatidylcholine and sphingomyelin. NPC1+/- cells showed intermediate levels of lipid efflux compared with NPC1+/+ and NPC1-/- cells. Binding of apoA-I to cholesterol-loaded and non-cholesterol-loaded cells was highest for NPC1+/- cells, with NPC1+/+ and NPC1-/- cells showing similar levels of binding. ABCA1 mRNA and protein levels increased in response to cholesterol loading in NPC1+/+ and NPC1+/- cells but showed low levels at base line and in response to cholesterol loading in NPC1-/- cells. Consistent with impaired ABCA1-dependent lipid mobilization to apoA-I for HDL particle formation, we demonstrate for the first time decreased plasma HDL-cholesterol levels in 17 of 21 (81%) NPC1-/- subjects studied. These results indicate that the cholesterol trafficking defect in NPC disease results in reduced activity of ABCA1, which we suggest is responsible for the low HDL-cholesterol in the majority of NPC subjects and partially responsible for the overaccumulation of cellular lipids in this disorder.  相似文献   

3.
Intestinal cholesterol absorption is modulated by transport proteins in enterocytes. Cholesterol uptake from intestinal lumen requires several proteins on apical brush-border membranes, including Niemann-Pick C1-like 1 (NPC1L1), scavenger receptor B-I, and CD36, whereas two ATP-binding cassette half transporters, ABCG5 and ABCG8, on apical membranes work together for cholesterol efflux back to the intestinal lumen to limit cholesterol absorption. NPC1L1 is essential for cholesterol absorption, but its function as a cell surface transporter or an intracellular cholesterol transport protein needs clarification. Another ATP transporter, ABCA1, is present in the basolateral membrane to mediate HDL secretion from enterocytes.  相似文献   

4.
Impaired cell cholesterol trafficking in Niemann-Pick type C (NPC) disease results in the first known instance of impaired regulation of the ATP-binding cassette transporter A1 (ABCA1), a lipid transporter mediating the rate-limiting step in high density lipoprotein (HDL) formation, as a cause of low plasma HDL-cholesterol in humans. We show here that treatment of human NPC1(-/-) fibroblasts with the liver X receptor (LXR) agonist TO-901317 increases ABCA1 expression and activity in human NPC1(-/-) fibroblasts, as indicated by near normalization of efflux of radiolabeled phosphatidylcholine and a marked increase in efflux of cholesterol mass to apoA-I. LXR agonist treatment prior to and during apoA-I incubation resulted in reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes, as well as cholesterol mass, in NPC1(-/-) cells. HDL species in human NPC disease plasma showed the same pattern of diminished large, cholesterol-rich alpha-1 HDL particles as seen in isolated heterozygous ABCA1 deficiency. Incubating NPC1(-/-) fibroblasts with the LXR agonist normalized the pattern of HDL particle formation by these cells. ABCG1, another LXR target gene involved in cholesterol efflux to HDL, also showed diminished expression in NPC1(-/-) fibroblasts and increased expression upon LXR agonist treatment. These results suggest that NPC1 mutations can be largely bypassed and that NPC1 protein function is non-essential for the trafficking and removal of cellular cholesterol if the down-stream defects in ABCA1 and ABCG1 regulation in NPC disease cells are corrected using an LXR agonist.  相似文献   

5.
It is important to understand HDL heterogeneity because various subspecies possess different functionalities. To understand the origins of HDL heterogeneity arising from the existence of particles containing only apoA-I (LpA-I) and particles containing both apoA-I and apoA-II (LpA-I+A-II), we compared the abilities of both proteins to promote ABCA1-mediated efflux of cholesterol from HepG2 cells and form nascent HDL particles. When added separately, exogenous apoA-I and apoA-II were equally effective in promoting cholesterol efflux, although the resultant LpA-I and LpA-II particles had different sizes. When apoA-I and apoA-II were mixed together at initial molar ratios ranging from 1:1 to 16:1 to generate nascent LpA-I+A-II HDL particles, the particle size distribution altered, and the two proteins were incorporated into the nascent HDL in proportion to their initial ratio. Both proteins formed nascent HDL particles with equal efficiency, and the relative amounts of apoA-I and apoA-II incorporation were driven by mass action. The ratio of lipid-free apoA-I and apoA-II available at the surface of ABCA1-expressing cells is a major factor in determining the contents of these proteins in nascent HDL. Manipulation of this ratio provides a means of altering the relative distribution of LpA-I and LpA-I+A-II HDL particles.  相似文献   

6.
7.
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation.  相似文献   

8.
Our aim in this study was to investigate the effect of aging on the capacity of HDLs to promote reverse cholesterol transport. HDLs were isolated from plasma of young (Y-HDL) and elderly (E-HDL) subjects. HDL-mediated cholesterol efflux was studied using THP-1 and J774 macrophages. Our results show that E-HDLs present a lower capacity to promote cholesterol efflux than Y-HDLs (41.7 +/- 1.4% vs. 49.0 +/- 2.2%, respectively; P = 0.013). Reduction in the HDL-mediated cholesterol efflux capacity with aging was more significant with HDL(3) than HDL(2) (Y-HDL(3), 57.3 +/- 1% vs. E-HDL(3), 50.9 +/- 2%; P = 0.012). Moreover, our results show that ABCA1-mediated cholesterol efflux is the more affected pathway in terms of cholesterol-removing capacity. Interestingly, the composition and structure of HDL revealed a reduction in the phosphatidylcholine-sphingomyelin ratio (E-HDL, 32.7 +/- 2.7 vs. Y-HDL, 40.0 +/- 1.9; P = 0.029) and in the phospholipidic layer membrane fluidity in E-HDL compared with Y-HDL as well as an alteration in the apolipoprotein A-I structure and charge. In conclusion, our results shown that E-HDLs present a reduced capacity to promote cholesterol efflux, principally through the ABCA1 pathway, and this may explain the increase of the incidence of cardiovascular diseases observed during aging.  相似文献   

9.
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1(-/-) fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1(-/-) fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2(-/-) cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1(-/-) and NPC2(-/-) fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1(-/-) fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2(-/-) fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1(-/-) cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

10.
Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph.  相似文献   

11.
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.  相似文献   

12.
13.
Plasma high density lipoprotein (HDL)-cholesterol levels are inversely correlated to the risk of atherosclerotic cardiovascular diseases. Reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which HDL particles play a crucial role to carry cholesterol derived from peripheral tissues to the liver. Recently, ATP-binding cassette transporters (ABCA1, ABCG1) and scavenger receptor (SR-BI) have been identified as important membrane receptors to generate HDL by removing cholesterol from foam cells. Adiponectin (APN) secreted from adipocytes is one of the important molecules to inhibit the development of atherosclerosis. Epidemiological studies have revealed a positive correlation between plasma HDL-cholesterol and APN concentrations in humans, although its mechanism has not been clarified. Therefore, in the present study, we investigated the role of APN on RCT, in particular, cellular cholesterol efflux from human monocyte-derived and APN-knockout (APN-KO) mice macrophages. APN up-regulated the expression of ABCA1 in human macrophages, respectively. ApoA-1-mediated cholesterol efflux from macrophages was also increased by APN treatment. Furthermore, the mRNA expression of LXRα and PPARγ was increased by APN. In APN-KO mice, the expression of ABCA1, LXRα, PPARγ, and apoA-I-mediated cholesterol efflux was decreased compared with wild-type mice. In summary, APN might protect against atherosclerosis by increasing apoA-I-mediated cholesterol efflux from macrophages through ABCA1-dependent pathway by the activation of LXRα and PPARγ.  相似文献   

14.
ABCA1 plays a major role in HDL metabolism. Cholesterol secretion by ABCA1 is dependent on the presence of extracellular acceptors, such as lipid-free apolipoprotein A-I (apoA-I). However, the importance of the direct interaction between apoA-I and ABCA1 in HDL formation remains unclear. In contrast, ABCB4 mediates the secretion of phospholipids and cholesterol in the presence of sodium taurocholate (NaTC) but not in the presence of apoA-I. In this study, we analyzed apoA-I binding and NaTC-dependent lipid efflux by ABCA1. ABCA1 mediated the efflux of cholesterol and phospholipids in the presence of NaTC as well as in the presence of apoA-I in an ATP-dependent manner. The Tangier disease mutation W590S, which resides in the extracellular domain and impairs apoA-I-dependent lipid efflux, greatly decreased NaTC-dependent cholesterol and phospholipid efflux. However, the W590S mutation did not impair apoA-I binding and, conversely, retarded the dissociation of apoA-I from ABCA1. These results suggest that the W590S mutation impairs ATP-dependent lipid translocation and that lipid translocation or possibly lipid loading, facilitates apoA-I dissociation from ABCA1. NaTC is a good tool for analyzing ABCA1-mediated lipid efflux and allows dissection of the steps of HDL formation by ABCA1.  相似文献   

15.
Eight proteins potentially involved in cholesterol efflux [ABCA1, ABCG1, CYP27A1, phospholipid transfer protein (PLTP), scavenger receptor type BI (SR-BI), caveolin-1, cholesteryl ester transfer protein, and apolipoprotein A-I (apoA-I)] were overexpressed alone or in combination in RAW 264.7 macrophages. When apoA-I was used as an acceptor, overexpression of the combination of ABCA1, CYP27A1, PLTP, and SR-BI (Combination I) enhanced the efflux by 4.3-fold. It was established that the stimulation of efflux was due to increased abundance of ABCA1 and increased apoA-I binding to non-ABCA1 sites on macrophages. This combination caused only a small increase of the efflux to isolated HDL. When HDL was used as an acceptor, overexpression of caveolin-1 or a combination of caveolin-1 and SR-BI (Combination II) was the most active, doubling the efflux to HDL, without affecting the efflux to apoA-I. When tested in the in vivo mouse model of cholesterol efflux, overexpression of ABCA1 and Combination I elevated cholesterol export from macrophages to plasma, liver, and feces, whereas overexpression of caveolin-1 or Combination II did not have an effect. We conclude that pathways of cholesterol efflux using apoA-I as an acceptor make a predominant contribution to cholesterol export from macrophages in vivo.  相似文献   

16.
Our objective was to evaluate the associations of individual apolipoprotein A-I (apoA-I)-containing HDL subpopulation levels with ABCA1- and scavenger receptor class B type I (SR-BI)-mediated cellular cholesterol efflux. HDL subpopulations were measured by nondenaturing two-dimensional gel electrophoresis from 105 male subjects selected with various levels of apoA-I in pre-beta-1, alpha-1, and alpha-3 HDL particles. ApoB-containing lipoprotein-depleted serum was incubated with [(3)H]cholesterol-labeled cells to measure efflux. The difference in efflux between control and ABCA1-upregulated J774 macrophages was taken as a measure of ABCA1-mediated efflux. SR-BI-mediated efflux was determined using cholesterol-labeled Fu5AH hepatoma cells. Fractional efflux values obtained from these two cell systems were correlated with the levels of individual HDL subpopulations. A multivariate analysis showed that two HDL subspecies correlated significantly with ABCA1-mediated efflux: small, lipid-poor pre-beta-1 particles (P=0.0022) and intermediate-sized alpha-2 particles (P=0.0477). With regard to SR-BI-mediated efflux, multivariate analysis revealed significant correlations with alpha-2 (P=0.0004), alpha-1 (P=0.0030), pre-beta-1 (P=0.0056), and alpha-3 (P=0.0127) HDL particles. These data demonstrate that the small, lipid-poor pre-beta-1 HDL has the strongest association with ABCA1-mediated cholesterol even in the presence of all other HDL subpopulations. Cholesterol efflux via the SR-BI pathway is associated with several HDL subpopulations with different apolipoprotein composition, lipid content, and size.  相似文献   

17.
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) performs incompletely understood biochemical functions that affect pathogenesis of Alzheimer's disease. ABCA7 is most similar in primary structure to ABCA1, the protein that mediates cell lipid efflux and formation of high-density lipoprotein (HDL). Lipid metabolic labeling/tracer efflux assays were employed to investigate lipid efflux in BHK-ABCA7(low expression), BHK-ABCA7(high expression) and BHK-ABCA1 cells. Shotgun lipid mass spectrometry was used to determine lipid composition of HDL synthesized by BHK-ABCA7 and BHK-ABCA1 cells. BHK-ABCA7(low) cells exhibited significant efflux only of choline-phospholipid and phosphatidylinositol. BHK-ABCA7(high) cells had significant cholesterol and choline-phospholipid efflux to apolipoprotein (apo) A-I, apo E, the 18A peptide, HDL, plasma and cerebrospinal fluid and significant efflux of sphingosine-lipid, serine-lipid (which is composed of phosphatidylserine and phosphatidylethanolamine in BHK cells) and phosphatidylinositol to apo A-I. In efflux assays to apo A-I, after adjustment to choline-phospholipid, ABCA7-mediated efflux removed ~4 times more serine-lipid and phosphatidylinositol than ABCA1-mediated efflux, while ABCA1-mediated efflux removed ~3 times more cholesterol than ABCA7-mediated efflux. Shotgun lipidomic analysis revealed that ABCA7-HDL had ~20 mol% less phosphatidylcholine and 3–5 times more serine-lipid and phosphatidylinositol than ABCA1-HDL, while ABCA1-HDL contained only ~6 mol% (or ~1.1 times) more cholesterol than ABCA7-HDL. The discrepancy between the tracer efflux assays and shotgun lipidomics with respect to cholesterol may be explained by an underestimate of ABCA7-mediated cholesterol efflux in the former approach. Overall, these results suggest that ABCA7 lacks specificity for phosphatidylcholine and releases significantly but not dramatically less cholesterol in comparison with ABCA1.  相似文献   

18.
Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia.  相似文献   

19.
Niemann-Pick disease type C (NPC) is caused by mutations leading to loss of function of NPC1 or NPC2 proteins, resulting in accumulation of unesterified cholesterol in late endosomes and lysosomes. We previously reported that expression of the ATP-binding cassette transporter A1 (ABCA1) is impaired in human NPC1−/− fibroblasts, resulting in reduced HDL particle formation and providing a mechanism for the reduced plasma HDL cholesterol seen in the majority of NPC1 patients. We also found that treatment of NPC1−/− fibroblasts with an agonist of liver X-receptor corrects ABCA1 expression and HDL formation and reduces lysosomal cholesterol accumulation. We have confirmed that ABCA1 expression is also reduced in NPC2−/− cells, and found that α-HDL particle formation is impaired in these cells. To determine whether selective up-regulation of ABCA1 can correct lysosomal cholesterol accumulation in NPC disease cells and HDL particle formation, we produced and infected NPC1−/− and NPC2−/− fibroblasts with an adenovirus expressing full-length ABCA1 and enhanced green fluorescent protein (AdABCA1-EGFP). ABCA1-EGFP expression in NPC1−/− fibroblasts resulted in normalization of cholesterol efflux to apolipoprotein A-I (apoA-I) and α-HDL particle formation, plus a marked reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes. In contrast, AdABCA1-EGFP treatment of NPC2−/− fibroblasts to normalize ABCA1 expression had no effect on cholesterol efflux to apoA-I or accumulation of excess cholesterol in lysosomes, and only partially corrected α-HDL formation by these cells. These results suggest that correction of ABCA1 expression can bypass the mutation of NPC1 but not NPC2 to mobilize excess cholesterol from late endosomes and lysosomes in NPC disease cells. Expression of ABCA1-EGFP in NPC1−/− cells increased cholesterol available for esterification and reduced levels of HMG-CoA reductase protein, effects that were abrogated by co-incubation with apoA-I. A model can be generated in which ABCA1 is able to mobilize cholesterol, to join the intracellular regulatory pool or to be effluxed for HDL particle formation, either directly or indirectly from the lysosomal membrane, but not from the lysosomal lumen. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

20.
The mobilization of cholesterol from intracellular pools to the plasma membrane is a determinant that governs its availability for efflux to extracellular acceptors. NPC1 and NPC2 are proteins localized in the late endosome and control cholesterol transport from the lysosome to the plasma membrane. Here, we report that NPC1 and NPC2 gene expression is induced by oxidized LDL (OxLDL) in human macrophages. Because OxLDLs contain natural activators of peroxisome proliferator-activated receptor alpha (PPARalpha), a fatty acid-activated nuclear receptor, the regulation of NPC1 and NPC2 by PPARalpha and the consequences on cholesterol trafficking were further studied. NPC1 and NPC2 expression is induced by synthetic PPARalpha ligands in human macrophages. Furthermore, PPARalpha activation leads to an enrichment of cholesterol in the plasma membrane. By contrast, incubation with progesterone, which blocks postlysosomal cholesterol trafficking, as well as NPC1 and NPC2 mRNA depletion using small interfering RNA, abolished ABCA1-dependent cholesterol efflux induced by PPARalpha activators. These observations identify a novel regulatory role for PPARalpha in the control of cholesterol availability for efflux that, associated with its ability to inhibit cholesterol esterification and to stimulate ABCA1 and scavenger receptor class B type I expression, may contribute to the stimulation of reverse cholesterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号