首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha2,8-linked polysialic acid (polySia) is a structurally unique antiadhesive glycotope that covalently modifies N-linked glycans on neural cell adhesion molecules (N-CAMs). These sugar chains play a key role in modulating cell-cell interactions, principally during embryonic development, neural plasticity, and tumor metastasis. The degree of polymerization (DP) of polySia chains on N-CAM is postulated to be of critical importance in regulating N-CAM function. There are limitations, however, in the conventional methods to accurately determine the DP of polySia on N-CAM, the most serious being partial acid hydrolysis of internal alpha2,8-ketosidic linkages that occur during fluorescent derivatization, a step necessary to enhance chromatographic detection. To circumvent this problem, we have developed a facile method that combines the use of Endo-beta-galactosidase to first release linear polySia chains from N-CAM, with high resolution high pressure liquid chromatography profiling. This strategy avoids acid hydrolysis prior to chromatographic profiling and thus provides an accurate determination of the DP and distribution of polySia on N-CAM. The potential of this new method was evaluated using a nonpolysialylated construct of N-CAM that was polysialylated in vitro using a soluble construct of ST8Sia II or ST8Sia IV. Whereas most of the oligosialic acid/polySia chains consisted of DPs approximately 50-60 or less, a subpopulation of chains with DPs approximately 150 to approximately 180 and extending to DP approximately 400 were detected. The DP of this subpopulation is considerably greater than reported previously for N-CAM. Endo-beta-galactosidase can also release polySia chains from polysialylated membranes expressed in the neuroblastoma cell line, Neuro2A, and native N-CAM from embryonic chick brains.  相似文献   

2.
3.
Recent studies have demonstrated the involvement of two polysialyltransferases in neural cell adhesion molecule (N-CAM) polysialylation. The availability of cDNAs encoding these enzymes facilitated studies on polysialylation of N-CAM. However, there is a dearth of detailed structural information on the degree of polymerization (DP), DP ranges, and the influence of embryogenesis on the DP. It is also unclear how many polysialic acid (polySia) chains are attached to a single core N-glycan. In this paper we applied new, efficient, and sensitive high pressure liquid chromatography methods to qualitatively and quantitatively analyze the polySia structures expressed on embryonic and adult chicken brain N-CAM. Our studies resulted in the following new findings. 1) The DP of the polySia chains was invariably 40-50 throughout developmental stages from embryonic day 5 to 21 after fertilization. In contrast, glycopeptides containing polySia with shorter DPs, ranging from 15 to 35, were isolated from adult brain. 2) Chemical evidence showed glycan chains abundant in Neu5Acalpha2,8Neu5Ac were expressed during all developmental stages including adult. 3) Levels of both di- and polySia were found to show distinctive changes during embryonic development.  相似文献   

4.
We have studied alpha 2,8-linked polysialic acid (polySia) and the neural cell adhesion molecule (N-CAM) in the adult rat brain by immunohistochemistry and Western blot analysis. Both molecules were widely distributed but not ubiquitous. Various brain regions showed colocalization of polySia and N-CAM. Strong immunoreactivity for polySia was seen in regions which were negative for N-CAM, such as the main and accessory olfactory bulbs. Immunohistochemical evidence for the heterogeneity of polySia expression in different brain regions was confirmed by immunoblotting. We present evidence that N-CAM is not the only polySia bearing protein in adult rat brain. Specifically, immunoprecipitation using the polySia-specific monoclonal antibody mAb 735 precipitated not only N-CAM isoforms carrying polySia, but also the sodium channel alpha subunit. Immunoblotting using sodium channel alpha subunit antibody (SP20) revealed a smear from 250 kDa upwards. PolySia removal using an endoneuraminidase specific for alpha 2,8-linked polysialic acid of 8 or more residues long, reduced this smear to a single band at 250 kDa. Thus both N-CAM and sodium channels carry homopolymers of alpha 2,8-linked polysialic acid in adult rat brain.  相似文献   

5.
6.
Polysialoglycoprotein (PSGP) in salmonid fish egg is a unique glycoprotein bearing alpha2,8-linked polysialic acid (polySia) on its O-linked glycans. Biosynthesis of the polySia chains is developmentally regulated and only occurs at later stage of oogenesis. Two alpha2,8-polysialyltransferases (alpha2,8-polySTs), PST (ST8Sia IV) and STX (ST8Sia II), responsible for the biosynthesis of polySia on N-glycans of glycoproteins, are known in mammals. However, nothing has been known about which alpha2,8-polySTs are involved in the biosynthesis of polySia on O-linked glycans in any glycoproteins. We thus sought to identify cDNA encoding the alpha2,8-polyST involved in polysialylation of PSGP. A clone for PST orthologue, rtPST, and two clones for the STX orthologue, rtSTX-ov and rtSTX-em, were identified in rainbow trout. The deduced amino acid sequence of rtPST shows a high identity (72-77%) to other vertebrate PSTs, while that of rtSTX-ov shows 92% identity with rtSTX-em and a significant identity (63-76%) to other vertebrate STXs. The rtPST exhibited the in vivo alpha2,8-polyST activity, although its in vitro activity was low. However, the rtSTXs showed no in vivo and very low in vitro activities. Interestingly, co-existence of rtPST and rSTX-ov in the reaction mixture synergistically enhanced the alpha2,8-polyST activity. During oogenesis, rtPST was constantly expressed, while the expression of rtSTX-ov was not increased until polySia chain is abundantly biosynthesized in the later stage. rtSTX-em was not expressed in ovary. These results suggest that the enhanced expression of rtSTX-ov under the co-expression with rtPST may be important for the biosynthesis of polySia on O-linked glycans of PSGP.  相似文献   

7.
8.
Sialic acid (Sia) is expressed as terminal sugar in many glycoconjugates and plays an important role during development and regeneration. Addition of homopolymers of Sia (polysialic acid; polySia/PSA) is a unique and highly regulated post-translational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration, and plastic processes including learning and memory. PolySia-NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. This review summarizes recent knowledge on Sia biosynthesis and the correlation between Sia biosynthesis and polysialylation of NCAM and report on approaches to modify the degree of polySia on NCAM in vitro and in vivo. First, we describe the inhibition of polysialylation of NCAM in ST8SiaII-expressing cells using synthetic Sia precursors. Second, we demonstrate that the key enzyme of the Sia biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) regulates and limits the synthesis of polySia by controlling the cellular Sia concentration.  相似文献   

9.
Studies of chicken embryos have demonstrated that cell adhesion molecules are important in embryonic induction and are expressed in defined sequences during embryogenesis and histogenesis. To extend these observations and to provide comparable evidence for heterochronic changes in such sequences during evolution, the local distributions of the neural cell adhesion molecule (N-CAM) and of the liver cell adhesion molecule (L-CAM) were examined in Xenopus laevis embryos by immunohistochemical and biochemical techniques. Because of the technical difficulties presented by the existence of multiple polypeptide forms of CAMs and by autofluorescence of yolk-containing cells, special care was taken in choosing and characterizing antibodies, fluorophores, and embedding procedures. Both N-CAM and L-CAM were found at low levels in pregastrulation embryos. During gastrulation, N-CAM levels increased in the presumptive neural epithelium and decreased in the endoderm, but L-CAM continued to be expressed in all cells including endodermal cells. During neurulation, the level of N-CAM expression in the neural ectoderm increased considerably, while remaining constant in non-neural ectoderm and diminishing in the somites; in the notochord, N-CAM was expressed transiently. Prevalence modulation was also seen at all sites of secondary induction: both CAMs increased in the sensory layer of the ectoderm during condensation of the placodes. During organogenesis, the expression of L-CAM gradually diminished in the nervous system while N-CAM expression remained high. In all other organs examined, the amount of one or the other CAM decreased, so that by stage 50 these two molecules were expressed in non-overlapping territories. Embryonic and adult tissues were compared to search for concordance of CAM expression at later stages. With few exceptions, the tissue distributions of N-CAM and L-CAM were similar in the frog and in the chicken from early times of development. In contrast to previous observations in the chicken and in the mouse, N-CAM expression was found to be high in the adult liver of Xenopus, whereas L-CAM expression was low. In the adult brain, N-CAM was expressed as three components of apparent molecular mass 180, 140, and 120 kD, respectively; in earlier stages of development only the 140-kD component could be detected. In the liver, a single N-CAM band appears at 160 kD, raising the possibility that this band represents an unusual N-CAM polypeptide. L-CAM appeared at all stages as a 124-kD molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Polysialic acid (polySia), a unique acidic glycan modifying neural cell adhesion molecule (NCAM), is known to regulate embryonic neural development and adult brain functions. Polysialyltransferase STX is responsible for the synthesis of polySia, and two single nucleotide polymorphisms (SNPs) of the coding region of STX are reported from schizophrenic patients: SNP7 and SNP9, respectively, giving STX(G421A) with E141K and STX(C621G) with silent mutations. In this study, we focused on these mutations and a binding activity of polySia to neural materials, such as brain-derived neurotrophic factor (BDNF). Here we describe three new findings. First, STX(G421A) shows a dramatic decrease in polySia synthetic activity on NCAM, whereas STX(C621G) does not. The STX(G421A)-derived polySia-NCAM contains a lower amount of polySia with a shorter chain length. Second, polySia shows a dopamine (DA) binding activity, which is a new function of polySia as revealed by frontal affinity chromatography for measuring the polySia-neurotransmitter interactions. Interestingly, the STX(G421A)-derived polySia-NCAM completely loses the DA binding activity, whereas it greatly diminishes but does not lose the BDNF binding activity. Third, an impairment of the polySia structure with an endosialidase modulates the DA-mediated Akt signaling. Taken together, impairment of the amount and quality of polySia may be involved in psychiatric disorders through impaired binding to BDNF and DA, which are deeply involved in schizophrenia and other psychiatric disorders, such as depression and bipolar disorder.  相似文献   

11.
ST8Sia II (STX) and ST8Sia IV (PST) are polysialic acid (polySia) synthases that catalyze polySia formation of neural cell adhesion molecule (NCAM) in vivo and in vitro. It still remains unclear how these structurally similar enzymes act differently in vivo. In the present study, we performed the enzymatic characterization of ST8Sia II and IV; both ST8Sia II and IV have pH optima of 5.8-6.1 and have no requirement of metal ions. Because the pH dependence of ST8Sia II and IV enzyme activities and the pK profile of His residues are similar, we hypothesized that a histidine residue would be involved in their catalytic activity. There is a conserved His residue (cf. His(348) in ST8Sia II and His(331) in ST8Sia IV, respectively) within the sialyl motif VS in all sialyltransferase genes cloned to date. Mutant ST8Sia II and IV enzymes in which this His residue was changed to Lys showed no detectable enzyme activity, even though they were folded correctly and could bind to CDP-hexanolamine, suggesting the importance of the His residue for their catalytic activity. Next, the degrees of polymerization of polySia in NCAM catalyzed by ST8Sia II and IV were compared. ST8Sia IV catalyzed larger polySia formation of NCAM than ST8Sia II. We also analyzed the (auto)polysialylated enzymes themselves. Interestingly, when ST8Sia II or IV itself was sialylated under conditions for polysialylation, the disialylated compound was the major product, even though polysialylated compounds were also observed. These results suggested that both ST8Sia II and IV catalyze polySia synthesis toward preferred acceptor substrates such as NCAM, whereas they mainly catalyze disialylation, similarly to ST8Sia III, toward unfavorable substrates such as enzyme themselves.  相似文献   

12.
Polysialic acid (polySia) is a unique polysaccharide that modifies neural cell adhesion molecule (NCAM) spatiotemporally. Recently, we demonstrated that polySia functions as a reservoir for several neurotrophic factors and neurotransmitters. Here, we showed the direct interaction between polySia and fibroblast growth factor-2 (FGF2) by native-PAGE, gel filtration, and surface plasmon resonance. The minimum chain length of polySia required for the interaction with FGF2 was 17. Compared with heparan sulfate, a well known glycosaminoglycan capable of forming a complex with FGF2, polySia formed a larger complex with distinct properties in facilitating oligomerization of FGF2, as well as in binding to FGF receptors. In polySia-NCAM-expressing NIH-3T3 cells, which were established by transfecting cells with either of the plasmids for the expression of the polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST that can polysialylate NCAM, FGF2-stimulated cell growth, but not cell survival, was inhibited. Taken together, these results suggest that polySia-NCAM might be involved in the regulation of FGF2-FGF receptor signaling through the direct binding of FGF2 in a manner distinct from heparan sulfate.  相似文献   

13.
Modulation of levels of polysialic acid (polySia), a sialic acid polymer, predominantly associated with the neural cell adhesion molecule (NCAM), influences neural functions, including synaptic plasticity, neurite growth, and cell migration. Biosynthesis of polySia depends on two polysialyltransferases ST8SiaII and ST8SiaIV in vertebrate. However, the enzyme involved in degradation of polySia in its physiological turnover remains uncertain. In the present study, we identified and characterized a murine sialidase NEU4 that catalytically degrades polySia. Murine NEU4, dominantly expressed in the brain, was found to efficiently hydrolyze oligoSia and polySia chains as substrates in sialidase in vitro assays, and also NCAM-Fc chimera as well as endogenous NCAM in tissue homogenates of postnatal mouse brain as assessed by immunoblotting with anti-polySia antibodies. Degradation of polySia by NEU4 was also evident in neuroblastoma Neuro2a cells that were co-transfected with Neu4 and ST8SiaIV genes. Furthermore, in mouse embryonic hippocampal primary neurons, the endogenously expressed NEU4 was found to decrease during the neuronal differentiation. Interestingly, GFP- or FLAG-tagged NEU4 was partially co-localized with polySia in neurites and significantly suppressed their outgrowth, whereas silencing of NEU4 showed the acceleration together with an increase in polySia expression. These results suggest that NEU4 is involved in regulation of neuronal function by polySia degradation in mammals.  相似文献   

14.
15.
Polysialic acid (polySia) is a unique and highly regulated posttranslational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration and plastic processes including learning and memory. Polysialylated NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. However, the impact of each enzyme in NCAM polysialylation is not understood. Here, we describe the selective cell-based in vitro inhibition of ST8SiaII using synthetic sialic acid precursors. We provide evidence for different substrate affinities of ST8SiaII and ST8SiaIV. These data open the possibility to study the individual role of the two enzymes during various aspects of brain development and function and in tumorigenesis.  相似文献   

16.
A Xenopus laevis mRNA encoding a cytokeratin of the basic (type II) subfamily that is expressed in postgastrulation embryos was cDNA-cloned and sequenced. Comparison of the deduced amino acid sequence of this polypeptide (513 residues, calculated mol. wt 55,454; Mr approximately 58,000 on SDS-PAGE) with those of other cytokeratins revealed its relationship to certain type II cytokeratins of the same and other species, but also remarkable differences. Using a subclone representing the 3'-untranslated portion of the 2.4 kb mRNA encoding this cytokeratin, designated XenCK55(5/6), in Northern blot experiments, we found that it differs from the only other Xenopus type II cytokeratin known, i.e. the simple epithelium-type component XenCK1(8), in that it is absent in unfertilized eggs and pregastrulation embryos. XenCK55(5/6) mRNA was first detected at gastrulation (stage 11) and found to rapidly increase during neurulation and further development. It was also identified in Xenopus laevis cultured kidney epithelial cells of the line A6 and in the adult animal where it is a major polypeptide in the oesophageal mucosa but absent in most other tissues examined. The pattern of XenCK55(5/6) expression during embryonic development was similar to that reported for the type I polypeptides of the 'XK81 subfamily' previously reported to be embryo-specific and absent in adult tissues. Therefore, we used a XK81 mRNA probe representing the 3'-untranslated region in Northern blots, S1 nuclease and hybrid-selection-translation assays and found the approximately 1.6 kb XK81 mRNA and the resulting protein of Mr approximately 48,000 not only in postgastrula embryos and tadpoles but also in the oesophagus of adult animals. Our results show that both these type II and type I cytokeratins are synthesized only on gastrulation and are very actively produced in early developmental stages but is continued in at least one epithelium of the adult organism. These observations raise doubts on the occurrence of Xenopus cytokeratins that are strictly specific for certain embryonic or larval stages and absent in the adult. They rather suggest that embryonically expressed cytokeratins are also produced in some adult tissues, although in a restricted pattern of tissue and cell type distribution.  相似文献   

17.
Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.  相似文献   

18.
Polysialic acid (polySia), an alpha2,8-linked polymer of N-acetylneuraminic acid, represents an essential regulator of neural cell adhesion molecule (NCAM) functions. Two polysialyltransferases, ST8SiaII and ST8SiaIV, account for polySia synthesis, but their individual roles in vivo are still not fully understood. Previous in vitro studies defined differences between the two enzymes in their usage of the two NCAM N-glycosylation sites affected and suggested a synergistic effect. Using mutant mice, lacking either enzyme, we now assessed in vivo the contribution of ST8SiaII and ST8SiaIV to polysialylation of NCAM. PolySia-NCAM was isolated from mouse brains and trypsinized, and polysialylated glycopeptides as well as glycans were analyzed in detail. Our results revealed an identical glycosylation and almost complete polysialylation of N-glycosylation sites 5 and 6 in polySia-NCAM irrespective of the enzyme present. The same sets of glycans were substituted by identical numbers of polySia chains in vivo, the length distribution of which, however, differed with the enzyme setting. Expression of ST8SiaIV alone led to higher amounts of short polySia chains and gradual decrease with length, whereas exclusive action of ST8SiaII evoked a slight reduction in long polySia chains only. These variations were most pronounced at N-glycosylation site 5, whereas the polysialylation pattern at N-glycosylation site 6 did not differ between NCAM from wild-type and ST8SiaII- or ST8SiaIV-deficient mice. Thus, our fine structure analyses suggest a comparable quality of polysialylation by ST8SiaII and ST8SiaIV and a distinct synergistic action of the two enzymes in the synthesis of long polySia chains at N-glycosylation site 5 in vivo.  相似文献   

19.
Angata K  Fukuda M 《Biochimie》2003,85(1-2):195-206
Polysialic acid is a unique carbohydrate composed of a linear homopolymer of alpha2,8-linked sialic acid, and is mainly attached to the fifth immunoglobulin-like domain of the neural cell adhesion molecule (NCAM) via a typical N-linked glycan in vertebrate neural system. Polysialic acid plays critical roles in neural development by modulating adhesive property of NCAM such as neural cell migration, neurite outgrowth, neural pathfinding, and synaptogenesis. The expression of polysialic acid is temporally and spatially regulated during neural development. Polysialylation of NCAM is catalyzed by two polysialyltransferases, ST8Sia II (STX) and ST8Sia IV (PST), which belong to the family of six genes encoding alpha 2,8-sialyltransferases. ST8Sia II and IV are expressed differentially in tissue-specific and cell-specific manners, and they apparently have distinct roles in development and organogenesis. The presence of polysialic acid is always associated with expression of ST8Sia II and/or IV, suggesting that ST8Sia II and IV are the key enzymes that control the expression of polysialic acid. Both ST8Sia II and IV can transfer multiple alpha 2,8-linked sialic acid residues to an acceptor N-glycan containing a NeuNAc alpha 2-->3 (or 6) Gal beta 1-->4GlcNAc beta 1-->R structure without participation of other enzymes. The two enzymes differently but cooperatively act on NCAM and the amount of polysialic acid synthesized by both enzymes together is greater than that synthesized by either enzyme alone. The polysialyltransferases are thus important regulators in polysialic acid synthesis and contribute to neural development in the vertebrate.  相似文献   

20.
Polysialic acid (polySia), an α-2,8-glycosidically linked polymer of sialic acid, is a developmentally regulated post-translational modification predominantly found on NCAM (neuronal cell adhesion molecule). Whilst high levels are expressed during development, peripheral adult organs do not express polySia-NCAM. However, tumours of neural crest-origin re-express polySia-NCAM: its occurrence correlates with aggressive and invasive disease and poor clinical prognosis in different cancer types, notably including small cell lung cancer (SCLC), pancreatic cancer and neuroblastoma. In neuronal development, polySia-NCAM biosynthesis is catalysed by two polysialyltransferases, ST8SiaII and ST8SiaIV, but it is ST8SiaII that is the prominent enzyme in tumours. The aim of this study was to determine the effect of ST8SiaII inhibition by a small molecule on tumour cell migration, utilising cytidine monophosphate (CMP) as a tool compound. Using immunoblotting we showed that CMP reduced ST8iaII-mediated polysialylation of NCAM. Utilizing a novel HPLC-based assay to quantify polysialylation of a fluorescent acceptor (DMB-DP3), we demonstrated that CMP is a competitive inhibitor of ST8SiaII (K i = 10 µM). Importantly, we have shown that CMP causes a concentration-dependent reduction in tumour cell-surface polySia expression, with an absence of toxicity. When ST8SiaII-expressing tumour cells (SH-SY5Y and C6-STX) were evaluated in 2D cell migration assays, ST8SiaII inhibition led to significant reductions in migration, while CMP had no effect on cells not expressing ST8SiaII (DLD-1 and C6-WT). The study demonstrates for the first time that a polysialyltransferase inhibitor can modulate migration in ST8SiaII-expressing tumour cells. We conclude that ST8SiaII can be considered a druggable target with the potential for interfering with a critical mechanism in tumour cell dissemination in metastatic cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号