首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fructose-1,6-bisphosphatase (FBPase), which is mainly used to supply NADPH, has an important role in increasing L-lysine production by Corynebacterium glutamicum. However, C. glutamicum FBPase is negatively regulated at the metabolic level. Strains that overexpressed Escherichia coli fructose-1,6-bisphosphatase in C. glutamicum were constructed, and the effects of heterologous FBPase on cell growth and L-lysine production during growth on glucose, fructose, and sucrose were evaluated. The heterologous fructose-1,6-bisphosphatase is insensitive to fructose 1-phosphate and fructose 2,6-bisphosphate, whereas the homologous fructose-1,6-bisphosphatase is inhibited by fructose 1-phosphate and fructose 2,6-bisphosphate. The relative enzyme activity of heterologous fructose-1,6-bisphosphatase is 90.8% and 89.1% during supplement with 3 mM fructose 1-phosphate and fructose 2,6-bisphosphate, respectively. Phosphoenolpyruvate is an activator of heterologous fructose-1,6-bisphosphatase, whereas the homologous fructose-1,6-bisphosphatase is very sensitive to phosphoenolpyruvate. Overexpression of the heterologous fbp in wild-type C. glutamicum has no effect on L-lysine production, but fructose-1,6-bisphosphatase activities are increased 9- to 13-fold. Overexpression of the heterologous fructose-1,6-bisphosphatase increases L-lysine production in C. glutamicum lysC T311I by 57.3% on fructose, 48.7% on sucrose, and 43% on glucose. The dry cell weight (DCW) and maximal specific growth rate (μ) are increased by overexpression of heterologous fbp. A “funnel-cask” diagram is first proposed to explain the synergy between precursors supply and NADPH supply. These results lay a definite theoretical foundation for breeding high L-lysine producers via molecular target.  相似文献   

2.
The aim of this work was to examine the possibility that fructose 2,6-bisphosphate (Fru-2,6-P2) plays a role in the regulation of gluconeogenesis from fat. Fru-2,6-P2 is known to inhibit cytoplasmic fructose 1,6-bisphosphatase and stimulate pyrophosphate:fructose 6-phosphate phosphotransferase from the endosperm of seedlings of castor bean (Ricinus communis). Fru-2,6-P2 was present throughout the seven-day period in amounts from 30 to 200 picomoles per endosperm. Inhibition of gluconeogenesis by anoxia or treatment with 3-mercaptopicolinic acid doubled the amount of Fru-2,6-P2 in detached endosperm. The maximum activities of fructose 6-phosphate,2-kinase and fructose 2,6-bisphosphatase (enzymes that synthesize and degrade Fru-2,6-P2, respectively) were sufficient to account for the highest observed rates of Fru-2,6-P2 metabolism. Fructose 6-phosphate,2-kinase exhibited sigmoid kinetics with respect to fructose 6-phosphate. These kinetics became hyperbolic in the presence of inorganic phosphate, which also relieved a strong inhibition of the enzyme by 3-phosphoglycerate. Fructose 2,6-bisphosphatase was inhibited by both phosphate and fructose 6-phosphate, the products of the reaction. The properties of the two enzymes suggest that in vivo the amounts of fructose-6-phosphate, 3-phosphoglycerate, and phosphate could each contribute to the control of Fru-2,6-P2 level. Variation in the level of Fru-2,6-P2 in response to changes in the levels of these metabolites is considered to be important in regulating flux between fructose 1,6-bisphosphate and fructose 6-phosphate during germination.  相似文献   

3.
When slices of Jerusalem artichoke tubers were incubated at 25°C, their concentration in fructose 2,6-bisphosphate increased up to 250-fold within 2 h. Fructose 2,6-bisphosphate was also formed, although at a slower rate, in slices incubated at 0°C. Its formation could not be explained by an increase in the concentration of fructose 6-phosphate or of ATP either by an activation of phosphofructo-2-kinase. Pyrophosphate—fructose-6-phosphate 1-phosphotransferase was the only enzyme present in a tuber extract which was found to be sensitive to fructose 2,6-bisphosphate. An improved procedure for the assay of fructose 2,6-bisphosphate is also reported.  相似文献   

4.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   

5.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

6.
Fructose 2,6-bisphosphate, a potent inhibitor of fructose-1,6-bisphosphatases, was found to be an inhibitor of the Escherichia coli enzyme. The substrate saturation curves in the presence of inhibitor were sigmoidal and the inhibition was much stronger at low than at high substrate concentrations. At a substrate concentration of 20 μM, 50% inhibition was observed at 4.8 μM fructose 2,6-bisphosphate. Escherichia coli fructose-1,6-bisphosphatase was inhibited by AMP (Kj = 16 μM) and phosphoenolpyruvate caused release of AMP inhibition. However, neither AMP inhibition nor its release by phosphoenolpyruvate was affected by the presence of fructose 2,6-bisphosphate. The results obtained, together with previous observations, provide further evidence for the fructose 2,6-bisphosphate-fructose-1,6-bisphosphatase active site interaction.  相似文献   

7.
Fructose-2,6-bisphosphatase (EC 3.1.3.46), which hydrolyzes fructose 2,6-bisphosphate to fructose 6-phosphate and Pi, has been purified to apparent homogeneity from spinach leaves and found to be devoid of fructose-6-phosphate,2-kinase activity. The isolated enzyme is a dimer (76 kDa determined by gel filtration) composed of two 33-kDa subunits. The enzyme is highly specific and displays hyperbolic kinetics with its fructose 2,6-bisphosphate substrate (Km = 32 microM). The products of the reaction, fructose 6-phosphate and Pi, along with AMP and Mg2+ are inhibitors of the enzyme. Nonaqueous cell fractionation revealed that, like the fructose 2,6-bisphosphate substrate, fructose-2,6-bisphosphatase as well as fructose-6-phosphate,2-kinase occur in the cytosol of spinach leaves.  相似文献   

8.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

9.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

10.
The class II fructose-1,6-bisphosphatase gene of Corynebacterium glutamicum, fbp, was cloned and expressed with a N-terminal His-tag in Escherichia coli. Purified, His-tagged fructose-1,6-bisphosphatase from C. glutamicum was shown to be tetrameric, with a molecular mass of about 140 kDa for the homotetramer. The enzyme displayed Michaelis-Menten kinetics for the substrate fructose 1,6-bisphosphate with a Km value of about 14 µM and a Vmax of about 5.4 µmol min–1 mg–1 and kcat of about 3.2 s–1. Fructose-1,6-bisphosphatase activity was dependent on the divalent cations Mg2+ or Mn2+ and was inhibited by the monovalent cation Li+ with an inhibition constant of 140 µM. Fructose 6-phosphate, glycerol 3-phosphate, ribulose 1,5-bisphosphate and myo-inositol-monophosphate were not significant substrates of fructose-1,6-bisphosphatase from C. glutamicum. The enzymatic activity was inhibited by AMP and phosphoenolpyruvate and to a lesser extent by phosphate, fructose 6-phosphate, fructose 2,6-bisphosphate, and UDP. Fructose-1,6-bisphosphatase activities and protein levels varied little with respect to the carbon source. Deletion of the chromosomal fbp gene led to the absence of any detectable fructose-1,6-bisphosphatase activity in crude extracts of C. glutamicum WTfbp and to an inability of this strain to grow on the carbon sources acetate, citrate, glutamate, and lactate. Thus, fbp is essential for growth on gluconeogenic carbon sources and likely codes for the only fructose-1,6-bisphosphatase in C. glutamicum.  相似文献   

11.
Vanadate (0.1–1 mM) was supplied to leaves of barley (Hordeum vulgare var. Roland) via the transpiration stream. It led to a selective inhibition of the rate of photosynthesis at high light without altering the initial slope of the light response curve, produced markedly biphasic photosynthesis induction kinetics, and selectively decreased sucrose synthesis compared to starch synthesis. There was a 3-fold increase of the steady state level of the signal metabolite fructose-2,6-bisphosphate in near saturating light. Fructose-2,6-bisphosphate is a potent inhibitor of cytosolic fruc-tose-l,6-bisphosphatase and, in agreement, the fructose-1,6-bisphosphatc level doubled. The increase of fructose-2,6-bisphosphate could not be accounted for by the known regulation of fructose-6-phosphate,2-kinase and fructose 2,6-bisphosphatase by 3-phosphoglycerate and fiuctose-6-phosphate, because these metabolites remained constant or even changed in the opposite direction to that required to generate an increase of fructose-2,6-bisphosphate. Instead, vanadate strongly inhibited the hydrolysis of fructose-2,6-bisphosphate in extracts, producing a half maximal inhibition at 2 \nM and 50 \iM in assays designed to preferentially measure the high-and low-affinity forms of fructose-2,6-bisphosphatase, respectively. Vanadale had no effect on fructosc-6-phosphate,2-kinase activity at these concentrations. Vanadate also led to a deactivation of sucrose phosphate synthase. The results are discussed in relation to the role of fructose-2,6-bisphosphate in regulating sucrose synthesis, and its interaction with the 'coarse' control of sucrose phosphate synthase.  相似文献   

12.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

13.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

14.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

15.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

16.
The properties of spinach leaf sucrose-phosphate synthetase (EC 2.4.1.14) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) have been studied. These two enzymes have been considered to be important in the control of sucrose synthesis. Sucrose-phosphate synthetase from leaf tissue has not been studied in detail previously and we report a technique for purifying this enzyme 50-fold by chromatography on AH-Sepharose 4B. This method frees the enzyme from contaminants which interfere with assay procedures with little or no loss of activity. The partially purified enzyme has a Km for UDP-glucose of 7.1 mm and for fructose 6-phosphate of 0.8 mm. Fructose 1,6-bisphosphate, inorganic phosphate and UDP are strong inhibitors. The inhibition patterns of these suggest that the enzyme operates either by an ordered bi-bi or a Theorell-Chance mechanism. Partially purified cytosolic fructose-1,6-bisphosphatase is not only inhibited by AMP as previously reported, but is also inhibited by fructose 6-phosphate and UDP. From our observations, we conclude that sucrose biosynthesis is indeed controlled through these two enzymes and it appears that the rate of sucrose synthesis is largely dependent upon the supply of triose phosphate and ATP from the chloroplast.  相似文献   

17.
How fructose 2,6-bisphosphate and metabolic intermediates interact to regulate the activity of the cytosolic fructose 1,6-bisphosphatase in vitro has been investigated. Mg2+ is required as an activator. There is a wide pH optimum, especially at high Mg2+. The substrate dependence is not markedly pH dependent. High concentrations of Mg2+ and fructose 1,6-bisphosphate are inhibitory, especially at higher pH. Fructose 2,6-bisphosphate inhibits over a wide range of pH values. It acts by lowering the maximal activity and lowering the affinity for fructose 1,6-bisphosphate, for which sigmoidal saturation kinetics are induced, but the Mg2+ dependence is not markedly altered. On its own, adenosine monophosphate inhibits competitively to Mg2+ and noncompetitively to fructose 1,6-bisphosphate. In the presence of fructose 2,6-bisphosphate, adenosine monophosphate inhibits in a fructose 1,6-bisphosphate-dependent manner. In the presence of adenosine monophosphate, fructose 2,6-bisphosphate inhibits in Mg2+-dependent manner. Fructose 6-phosphate and phosphate both inhibit competitively to fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate does not affect the inhibition by phosphate, but weakens inhibition by fructose 6-phosphate. Dihydroxyacetone phosphate and hydroxypyruvate inhibit noncompetitively to fructose 1,6-bisphosphate and to Mg2+, but both act as activators in the presence of fructose 2,6-bisphosphate by decreasing the S0.5 for fructose 1,6-bisphosphate. A model is proposed to account for the interaction between these effectors.  相似文献   

18.
(i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.Abbreviations and symbols Chl chlorophyll - Fru6P fructose-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - Fru-1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - Fru2,6Pase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - PGI phosphoglucose isomerase - Pi inorganic phosphate - QA acceptor for photosystem II - Ru1,5bisP ributose-1,5-bisphosphate - SPS sucrose-phosphate synthase  相似文献   

19.
To identify those residues involved in fructose 6-phosphate binding to the kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase site-directed mutations were engineered at Lys194, Arg195, Arg230, and Arg238. The mutant enzymes were purified to homogeneity by anion exchange and Blue-Sepharose chromatography and/or substrate elution from phosphocellulose columns. Circular dichroism experiments demonstrated that all of the single amino acid mutations had no effect on the secondary structure of the protein. In addition, when fructose-2,6-bisphosphatase activity was measured, all mutants had Km values for fructose 2,6-bisphosphate, Ki values for fructose 6-phosphate, and maximal velocities similar to that of the wild-type enzyme. Mutation of Arg195----Ala, or His, had little or no effect on the maximal velocity of the kinase but increased the Km for fructose 6-phosphate greater than 3,000-fold. Furthermore, the Ka for phosphate for Arg195Ala was increased 100-fold compared with the wild-type enzyme. Mutation of Lys194----Ala had no effect on maximal velocity or the Km for fructose 6-phosphate. Mutation of either Arg230 or Arg238----Ala increased the maximal velocity and the Km for fructose-6 phosphate of the kinase by 2-3-fold but had no effect on fructose-2,6-bisphosphatase. However, the Km values for ATP of the Arg230Ala and Arg238Ala mutants were 30-40-fold higher than that for the wild-type enzyme. Mutation of Gly48----Ala resulted in a form with no kinase activity, but fructose-2,6-bisphosphatase activity was identical to that of the wild-type enzyme. The results indicate that: 1) Arg195 is a critical residue for the binding of fructose 6-phosphate to the 6-phospho-fructo-2-kinase domain, and that interaction of the sugar phosphate with Arg195 is highly specific since mutation of the adjacent Lys194----Ala had no effect on fructose 6-phosphate binding; 2) Arg195 also play an important role in the binding of inorganic phosphate; and 3) Gly48 is an important residue in the nucleotide binding fold of 6-phosphofructo-2-kinase and that both Arg230 and Arg238 are also involved in ATP binding; and 4) the bifunctional enzyme has two separate and independent fructose 6-phosphate binding sites.  相似文献   

20.
The effects of tolbutamide on the activities of fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase were examined using rat hepatocytes. Tolbutamide stimulated fructose-6-phosphate,2-kinase activity and inhibited fructose-2,6-bisphosphatase activity, resulting in an increase of fructose-2,6-bisphosphate level. Changes in the activities of the enzyme by tolbutamide were due to variation in the Km value, but not dependent on alteration of Vmax. Glucagon inhibition of fructose-2,6-bisphosphate formation resulting from an inactivation of fructose-6-phosphate,2-kinase and an activation of fructose-2,6-bisphosphatase was released by tolbutamide. Tolbutamide stimulation of fructose-2,6-bisphosphate formation through regulation of fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase may produce enhancement of glycolysis and inhibition of gluconeogenesis in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号