首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
The influence of a Donnan effect on the transport of glycine by hemolysed and restored pigeon red cells was examined. The Donnan effect was produced by replacing Cl- with 2,4-toluenedisulfonate or glutamate. The effects of the associated membrane potential and inside-outside pH difference on glycine entry and exit rates were examined. The effects of pH on entry and exit rates in the absence of a Donnan effect were also examined. In the absence of a Donnan effect, Na+-dependent glycine entry requires the protonated form of a group with a pKapp of 7.9 and the deprotonated form of another group with a pKapp of 6.8. Neither of these are required for exit but the deprotonated form of a group(s) with a pKapp of 6.2 is required. The pK 7.9 group and pK 6.2 group probably react with H+ at the inner face of the membrane and the pK 6.8 group probably reacts at the outer face. The V for glycine entry was determined for cells with their Cl- largely replaced by toluenedisulfonate and without such replacement. Between pH 6.1 and 7, the ratio of the respective V values, VT/VC1, was 1.5-1.7. VT/VC1 rose above pH 7 to near 4 at pH 8.3. At pH 6.9, with glutamate replacing cell Cl-, the analogous ratio (VGlu/VC1) was 1.7. The increase of VT/VC1 above pH 7 could be quantitatively accounted for by the increase in cell [H+]/medium [H+] caused by the Donnan effect together with the assumption that the pK 7.9 group reacts with H+ at the inner face of the membrane. When cell Cl- was replaced by toluenedisulfonate or glutamate there was a drop in the term in the glycine Km describing Na+ dependence of glycine entry. When cell Cl- was replaced by toluenedisulfonate therewas a rise in the Na+-independent term in the glycine entry Km. By replacing varying amounts of cell Cl- with either toluenedisulfonate or glutamate, plots were obtained of entry rates vs. the cell [Cl-]/ medium [Cl-] ratio consistent with the assumption that the Donnan-induced membrane potential acts on a "moving" charge. Glycine exit was only slightly accelerated by trans-toluenedisulfonate. The ratio, exit rate into toluenedisulfonate medium/exit rate into Cl- medium rose with decreasing pH. This rise could be accounted for by a Donnan-induced inside-outside pH difference which affects a pKapp 6.2 group reacting with internal H+. The observed influences of the Donnan effect on V (glycine entry), on both components of Km (glycine entry), on the shape of the plot of glycine entry rate vs. the cell [Cl-]/medium [Cl-] ratio and on glycine exit all fit the assumptions that when the empty porter reorients, one unit of negative charge accompanies it "across" the membrane and that no other steps involve charge movement. The properties of the system seem inconsistent with a translational ("ferry boat") mobile carrier.  相似文献   

2.
The exit of glutamate from Escherichia coli K-12 cells preloaded with the radioactive amino acid and its relation to the reaction of entry were studied. Experiments with cells preloaded to different intracellular concentrations of radioactive glutamate confirmed our earlier conclusion that glutamate exit was a first-order reaction. l-Glutamate, competitive inhibitors of glutamate uptake (d-glutamate and l-glutamate-gamma-methyl ester), noncompetitive inhibitors of glutamate uptake (l-serine and l-alanine), and the energy poison NaN(3) all accelerated glutamate exit 2.8-fold. No additive effect was observed in the presence of NaN(3) together with l-glutamate. Preloading with cold l-glutamate did not increase the rate of uptake of radioactive glutamate. It is concluded that the acceleration of glutamate exit in the presence of l-glutamate in the medium is not due to exchange diffusion and that l-glutamate and azide affect exit indirectly by preventing recapture. Sucrose, 25%, slowed down glutamate exit by a factor of about 4.7 and increased the steady-state level of glutamate accumulation to about the same extent. Increasing the intracellular K(+) concentration enhanced glutamate uptake but did not affect the half-time of exit. It is concluded that separate carriers are most probably involved in mediating the entry and exit reactions.  相似文献   

3.
Intracellular electrical potentials and K activity, (K)c, were determined simultaneously in Necturus small intestine before and after the addition of alanine to the mucosal solution. As noted previously (Gunter-Smith, Grasset & Schultz, 1982), the addition of alanine to the mucosal solution resulted in a prompt depolarization of the electrical potential difference across the apical membrane (psi mc) and a decrease in the slope resistance of that barrier (rm). This initial response was followed by a slower repolarization of psi mc associated with a decrease in the slope resistance of the basolateral membrane (rs) so that when the steady state was achieved (rm/rs) did not differ significantly from control values in the absence of alanine. In the absence of alanine, psi mc averaged -32 mV and (K)c averaged 67 mM. When a steady state was achieved in the presence of alanine these values averaged -24 mV and 50 mM, respectively. The steady-state electrochemical potential differences for K across the basolateral membrane in the absence and presence of alanine did not differ significantly. Inasmuch as the rate of transcellular active Na transport or "pump activity" was increased two- to threefold in the presence of alanine, it follows that, if active Na extrusion across the basolateral membrane is coupled to active K uptake across that barrier with a fixed stoichiometry then, the decrease in rs must be due to an increase in the conductance of the basolateral membrane to K that parallels the increase in "pump activity". This "homocellular" regulatory mechanism serves to (i) prevent an increase in (K)c due to an increase in pump activity; and, (ii) repolarize psi mc and thus restore the electrical driving force for the rheogenic Na-coupled entry processes.  相似文献   

4.
The current-voltage relations of the amiloride-sensitive Na entry pathway across the apical membrane of rabbit descending colon, exposed to a high K serosal solution, were determined in the presence of varying mucosal Na activities, (Na)m, ranging from 6.2 to 99.4 mM. These relations could be closely fit to the "constant field" flux equation yielding estimates of the permeability of the apical membrane to Na, PmNa, and the intracellular Na activity, (Na)c. The following empirical relations emerged: (Na)c increased hyperbolically with increasing (Na)m; PmNa decreased hyperbolically with increasing (Na)m and linearly with increasing (Na)c; spontaneous variations in Na entry rate at constant (Na)m could be attributed entirely to parallel, spontaneous variations in PmNa; the rate of Na entry increased hyperbolically with increasing (Na)m obeying simple Michaelis-Menten kinetics; the relation between (Na)c and "pump rate," however, was sharply sigmoidal and could be fit by the Hill equation assuming strong cooperative interactions between Na and multiple sites on the pump; the Hill coefficient was 2-3 and the value of (Na)c at which the pump-rate is half-maximal was 24 mM. The results provide an internally consistent set of relations among Na entry across the apical membrane, the intracellular Na activity and basolateral pump rate that is also consistent with data previously reported for this and other Na-absorbing epithelia.  相似文献   

5.
The influence of a Donnan effect on the transport of glycine by hemolysed and restored pigeon red cells was examined. The Donnan effect was produced by replacing Cl? with 2,4-toluenedisulfonate or glutamate. The effects of the associated membrane potential and inside-outside pH difference on glycine entry and exit rates were examined. The effects of pH on entry and exit rates in the absence of a Donnan effect were also examined.In the absence of a Donnan effect, Na+-dependent glycine entry requires the protonated form of a group with a pKapp of 7.9 and the depronated form of another group with a pKapp of 6.8. Neither of these are required for exit but the deprotonated form of a group(s) with a pKapp of 6.2 is required. The pK 7.9 group and pK 6.2 group probably react with H+ at the inner face of the membrane and the pK 6.8 group probably reacts at the outer face.The V for glycine entry was determined for cells with their Cl? largely replaced by toluenedisulfonate and without such replacement. Between pH 6.1 and 7, the ratio of the respective V values, VT/VCl, was 1.5–1.7. VT/VCl rose above pH 7 to near 4 at pH 8.3. At pH 6.9, with glutamate replacing cell Cl?, the analogous ratio (VGlu/VCl) was 1.7. The increase of VT/VCl above pH 7 could be quantitatively accounted for by the increase in cell [H+]/medium [H+] caused by the Donnan effect together with the assumption that the pK 7.9 group reacts with H+ at the inner face of the membrane.When cell Cl? was replaced by toluenedisulfonate or glutamate there was a drop in the term in the glycine Km describing Na+ dependence of glycine entry. When cell Cl? was replaced by toluenedisulfonate there was a rise in the Na+-independent term in the glycine entry Km. By replacing varying amounts of cell Cl? with either toluenedisulfonate or glutamate, plots were obtained of entry rates vs. the cell [Cl?]/medium [Cl?] ratio consistent with the assumption that the Donnan-induced membrane potential acts on a “moving” charge. Glycine exit was only slightly accelerated by trans-toluenedisulfonate. The ratio, exit rate into toluenedisulfonate medium/exit rate into Cl? medium rose with decreasing pH. This rise could be accounted for by a Donnan-induced inside-outside pH difference which affects a pKapp 6.2 group reacting with internal H+.The observed influences of the Donnan effect on V(glycine entry), on both components of Km(glycine entry), on the shape of the plot of glycine entry rate vs. the cell [Cl?]/medium [Cl?] ratio and on glycine exit all fit the assumptions that when the empty porter reorients, one unit of negative charge accompanies it “across” the membrane and that no other steps involve charge movement.The properties of the system seem inconsistent with a translational (“ferry boar”) mobile carrier.  相似文献   

6.
Effect of Inhibitors on Alanine Transport in Isolated Rabbit Ileum   总被引:4,自引:4,他引:0  
The effects of metabolic inhibitors and ouabain on alanine transport across rabbit ileum, in vitro, have been investigated. Net transport of alanine and Na across short-circuited segments of ileum is virtually abolished by cyanide, 2,4-dinitrophenol, iodoacetate, and ouabain. However, these inhibitors do not markedly depress alanine influx from the mucosal solution, across the brush border, into the intestinal epithelium, and they do not significantly affect the Na dependence of this entry process. The results of this investigation indicate that: (a) the Na dependence of alanine influx does not reflect a mechanism in which the sole function of Na is to link metabolic energy directly to the influx process; and (b) the inhibition of net alanine transport across intestine is, in part, the result of an increased rate coefficient for alanine efflux out of the cell across the brush border. Although these findings do not exclude a direct link between metabolic energy and alanine efflux, the increased efflux may be the result of the increased intracellular Na concentration in the presence of these inhibitors. The results of these studies are qualitatively consistent with a model for alanine transport across the brush border which does not include a direct link to metabolic energy.  相似文献   

7.
Summary Intracellular K activities, (K) c , in rabbit gallbladder were determined using conventional and ion-selective microelectrodes. (K) c averaged 73mm and was 1.5 times that predicted for an equilibrium distribution of the ion across both apical and basolateral membranes. Thus, K must be actively transported into the cell, and the responsible mechanism is almost certainly the Na–K exchange pump in the basolateral membrane.Measurements of the bidirectional transepithelial fluxes of42K indicate that K is secreted into the mucosal solution at a rate of 0.8 eq/cm2 hr; this value is only 6% of the rate of transcellular Na absorption by this epithelium.Calculation of the conductance of the basolateral membrane,G s, reveals that it is too low to account for the maintenance of the steady-state (K) c by a 3 Na2 K pump mechanism at the basolateral membrane if K exit across that barrier is entirely electrodiffusional.Our results together with those of others strongly suggest that a significant fraction of downhill K exit from the cell across the basolateral membrane is nonconductive and coupled to the movement of some other ion, perhaps Cl.  相似文献   

8.
3-O-Methyl-D-glucose transport across the plasma membrane of isolated rat hepatocytes was followed for net entry of the sugar into sugar-free cells (zero trans entry), net exit of sugar into sugar-free medium (zero trans exit) and for unidirectional entry and exit fluxes when cells had been equilibrated with sugar in the extracellular medium (equilibrium exchange entry and exit). These measurements were performed at 20 degrees C and pH 7.4 by the use of simple manual methods. Initial rates of transport showed a Michaelis--Menten dependency on the sugar concentration at the cis side of the membrane over the range of concentrations tested (100 microM to 100 mM). Transport was found to be symmetrical with no evidence of substrate stimulation of transport from the trans side of the membrane. Parameters (mean values +/- S.E.M.) of transport were estimated as Vmax. 86.2 +/- 9.7 mmol/litre of cell water per min and Km 18.1 +/- 5.9 mM for exchange entry, Vmax. 78.8 +/- 5.3 mmol/litre of cell water per min and Km 17.6 +/- 3.5 mM for exchange exit, Vmax. 84.1 +/- 8.4 mmol/litre of cell water per min and Km 16.8 +/- 4.6 mM for zero trans exit.  相似文献   

9.
1. The relation between p-aminohippurate uptake and the electrochemical potential gradient of Na+ (delta muNa+) across the peritubular membrane was examined in newt (Triturus pyrrhogaster) kidney. The delta muNa+ was modified by changing cellular Na+ concentration and/or lowering the electrical potential difference across the peritubular membrane (peritubular membrane potential) 2. Elevation of external K+ concentration or addition of alanine at 40 mM to the medium decreased the delta muNa+ mainly through the depolarization of the cells. Addition of 1 mM ouabain resulted in a decrease in the peritubular membrane potential and increase in cellular Na+ concentration, thus decrease in the delta muNa+. 3. p-Aminohippurate uptake decreased in proportion to the decrease in the delta muNa+ under all experimental conditions, indicating that the maintenance of the delta muNa+ is required for p-aminohippurate transport. 4. All three different experimental conditions, high medium K+ concentration, 40 mM alanine or 1 mM ouabain, increased the apparent Michaelis constant, Kt, without affecting the maximal uptake rate, V, for p-aminohippurate. These results suggests that the delta muNa+, largely the peritubular membrane potential, may affect the association and/or dissociation of p-aminohippurate and Na+ at both interfaces of the peritubular membrane of the proximal tubular cells.  相似文献   

10.
Alanine Efflux across the Serosal Border of Turtle Intestine   总被引:1,自引:0,他引:1  
The exit of alanine across the serosal border of the epithelial cells of turtle intestine was measured by direct and indirect techniques. A decrease or an increase in cell Na did not affect the amino acid flux from cell to serosal solution. Cells loaded with Na and alanine did not exhibit any extrusion of alanine when their serosal membranes were exposed to an Na-free medium containing alanine. However, substantial amino acid extrusion was observed across the mucosal cell border under similar conditions. Although alanine flux across the serosal membrane appeared to be Na-independent, it showed a tendency toward saturation as cellular alanine concentration was elevated. The results are consistent with the postulate that the serosal and mucosal membranes of intestinal cells are asymmetrical with respect to amino acid transport mechanisms. The serosal membrane appears to have an Na-independent carrier-mediated mechanism responsible for alanine transport while transport across the mucosal border involves an Na-dependent process.  相似文献   

11.
Deafness is a serious condition that affects millions of people and can also lead to dementia. Moreover, Karet and associates reported in 1999 that mutations in the gene encoding H(+) V-ATPase subunit B(1) lead to deafness. Yet ionic flows that enable humans to hear high-pitched sounds at 20,000 cycles/sec (20 kHz) are not well understood. Sound is transduced to electrical signals by stereocilia of hair cells by influx of Ca(2+) and K(+) as the "transducer channel" opens transiently and reduces the ~90 mV (endolymph positive) endocochlear potential (EP) by ~20 mV as the receptor potential. The EP as well as concentrations of Ca(2+), H(+) and K(+) must remain constant to produce reliable signals. Ca(2+) entry is balanced by Ca(2+) exit via a plasma membrane Ca(2+) ATPase (PMCA2a) but the Ca(2+) exit is coupled to H(+) entry. Moreover, K(+) entry is balanced by K(+) exit via a long diffusion route through several channels which is too slow to account for 20 kHz signaling. The problem is solved by a new hypothesis in which an H(+) V-ATPase generates the EP and removes the H(+) while a new K(+)/H(+) antiporter uses the voltage to drive H(+) back in and the K(+) back out. In the new model, Ca(2+), H(+) and K(+) cycle between unstirred layers on the endolymph- and cytoplasmic- borders of the stereocilial membrane through distances of ~20 nanometers with travel time of ~10 μs, which is fast enough to account for the 50 μs open/close time for 20 kHz signaling. Central to this model is the hypothesis that a K(+) pump which secretes K(+) into a K(+)-rich compartment is composed of a voltage producing (electrogenic) H(+) V-ATPase that is electrically coupled to a voltage-driven (electrophoretic) K(+)/nH(+) antiporter (KHA). Conversely, for an H(+) V-ATPase to secrete K(+) into a K(+) rich compartment, it must be coupled to a KHA. Richard Keynes reviewed evidence in 1969 that such a K(+) pump, which he called a Type V pump, is present in the stria vascularis of cochlea and the goblet cell apical membrane of caterpillars. Its signature is a large outside positive potential of ~100 mV, K(+) secretion into a K(+) rich compartment and reversible inhibition by anoxia. The key role of the Type V K(+) pump in generating the EP was recognized by Sellick and Bock in 1974 and others but has disappeared from the hearing literature during the past decades. Its revival here is based on immunolocalization of KHA2 in the stereocilial membrane and Gillespie's generously shared mass spectroscopy evidence that all but one of the V(1) ATPase subunits are detected in isolated chicken stereocilia but V(o) and KHAs are not detected (implying that KHAs must be in the membrane). The new model proposed in the present paper could lead to important changes in our understanding of sensory physiology.  相似文献   

12.
Abstract: Alanine transport and the role of alanine amino-transferase in the synthesis and consumption of glutamate were investigated in the preparation of rat brain synaptosomes. Alanine was accumulated rapidly via both the high-and low-affinity uptake systems. The high-affinity transport was dependent on the sodium concentration gradient and membrane electrical potential, which suggests a cotransport with Na+. Rapid accumulation of the Na+-alanine complex by synaptosomes stimulated activity of the Na+/K+ pump and increased energy utilization; this, in turn, activated the ATP-producing pathways, glycolysis and oxidative phosphorylation. Accumulation of Na+ also caused a small depolarization of the plasma membrane, a rise in [Ca2+]1, and a release of glutamate. Intra-synaptosomal metabolism of alanine via alanine aminotransferase, as estimated from measurements of N fluxes from labeled precursors, was much slower than the rate of alanine uptake, even in the presence of added oxoacids. The velocity of [15N]alanine formation from [15N]glutamine was seven to eight times higher than the rate of [15N]glutamate generation from [15N]alanine. It is concluded that (a) overloading of nerve endings with alanine could be deleterious to neuronal function because it increases release of glutamate; (b) the activity of synaptosomal alanine aminotransferase is much slower than that of glutaminase and hence unlikely to play a major role in maintaining [glutamate] during neuronal activity; and (c) alanine aminotransferase might serve as a source of glutamate during recovery from ischemia/hypoxia when the alanine concentration rises and that of glutamate falls.  相似文献   

13.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

14.
Previous experiments indicate that the apical membrane of the frog retinal pigment epithelium contains electrogenic Na:K pumps. In the present experiments net potassium and rubidium transport across the epithelium was measured as a function of extracellular potassium (rubidium) concentration, [K]0 ( [Rb]0). The net rate of retina-to-choroid 42K(86Rb) transport increased monotonically as [K]0 ( [Rb]0) increased from approximately 0.2 to 5 mM on both sides of the tissue or on the apical (neural retinal) side of the tissue. No further increase was observed when [K]0 ( [Rb]0) was elevated to 10 mM. Net sodium transport was also stimulated by elevating [K]0. The net K transport was completely inhibited by 10-4 M ouabain in the solution bathing the apical membrane. Ouabain inhibited the unidirectional K flux in the direction of net flux but had no effect on the back-flux in the choroid-to-retina direction. The magnitude of the ouabain-inhibitable 42K(86Rb) flux increased with [K]0 ( [Rb]0). These results show that the apical membrane Na:K pumps play an important role in the net active transport of potassium (rubidium) across the epithelium. The [K]0 changes that modulate potassium transport coincide with the light-induced [K]0 changes that occur in the extracellular space separating the photoreceptors and the apical membrane of the pigment epithelium.  相似文献   

15.
3-O-Methyl-D-glucose transport across the plasma membrane of cultured human lymphocytes of the IM-9 line was followed for net entry into sugar-free cells (zero trans entry), net exit into sugar-free medium (zero trans exit) and for equilibration of labelled sugar in cells with the same sugar concentration in the intracellular water as in the medium (equilibrium exchange). The measurements were performed at 37 degrees C (pH 7.4). Equilibrium exchange of 1 mM 3-O-methylglucose (t 1/2 about 7 S) was exponential, suggesting a homogeneous cell suspension. Initial rates of transport showed a Michaelis-Menten dependency on the sugar concentration. The transport system was found to be asymmetric with the following kinetic parameters. Zero trans entry: Km = 2.8 mM, Vmax = 10.7 mM X min-1. Zero trans exit: Km = 9.5 mM, Vmax = 37.9 mM X min-1. Equilibrium exchange: Km = 9.9 mM, Vmax = 44.0 mM X min-1. Finally, the affinity constant for the internal site was measured as approx. 1.2 mM using the infinite cis protocol.  相似文献   

16.
Summary Epithelial cell volume is a sensitive indicator of the balance between solute entry into the cell and solute exit. Solute accumulation in the cell leads to cell swelling because the water permeability of the cell membranes is high. Similarly, solute depletion leads to cell shrinkage. The rate of volume change under a variety of experimental conditions may be utilized to study the rate and direction of solute transport by an epithelial cell. The pathways of water movement across an epithelium may also be deduced from the changes in cellular volume. A technique for the measurement of the volume of living epithelial cells is described, and a number of experiments are discussed in which cell volume determination provided significant new information about the dynamic behavior of epithelia. The mechanism of volume regulation of epithelial cells exposed to anisotonic bathing solution is discussed and shown to involve the transient stimulation of normally dormant ion exchangers in the cell membrane.  相似文献   

17.
Effects of ischaemia on metabolite concentrations in rat liver   总被引:24,自引:21,他引:3       下载免费PDF全文
1. Changes in the concentrations of ammonia, glutamine, glutamate, 2-oxoglutarate, 3-hydroxybutyrate, acetoacetate, alanine, aspartate, malate, lactate, pyruvate, NAD(+), NADH and adenine nucleotides were measured in freeze-clamped rat liver during ischaemia. 2. Although the concentrations of most of the metabolites changed rapidly during ischaemia the ratios [glutamate]/[2-oxoglutarate][NH(4) (+)] and [3-hydroxybutyrate]/[acetoacetate] changed equally and the value of the expression [3-hydroxybutyrate][2-oxoglutarate][NH(4) (+)]/[acetoacetate][glutamate] remained approximately constant, indicating that the 3-hydroxybutyrate dehydrogenase and glutamate dehydrogenase systems were at near-equilibrium with the mitochondrial NAD(+) couple. 3. The value of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] was about 0.7 in vivo and remained fairly constant during the ischaemic period of 5min, although the concentrations of alanine and oxoglutarate changed substantially. No explanation can be offered why the value of the ratio differed from that of the equilibrium constant of the alanine aminotransferase reaction, which is 1.48. 4. Injection of l-cycloserine 60min before the rats were killed increased the concentration of alanine in the liver fourfold and decreased the concentration of the other metabolites measured, except that of pyruvate. During ischaemia the concentration of alanine did not change but that of aspartate almost doubled. 5. After treatment with l-cycloserine the value in vivo of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] rose from 0.7 to 2.4. During ischaemia the value returned to 0.8. 6. The effects of l-cycloserine are consistent with the assumption that it specifically inhibits alanine aminotransferase. 7. Most of the alanine formed during ischaemia is probably derived from pyruvate and from ammonia released by the deamination of adenine nucleotides and glutamine. The alanine is presumably formed by the combined action of glutamate dehydrogenase and alanine aminotransferase. 8. The rate of anaerobic glycolysis, calculated from the increase in the lactate concentration, was 1.3mumol/min per g fresh wt. 9. Although the concentrations of the adenine nucleotides changed rapidly during ischaemia, the ratio [ATP][AMP]/[ADP](2) remained constant at 0.54, indicating that adenylate kinase established near-equilibrium under these conditions.  相似文献   

18.
Determinants of epithelial cell volume   总被引:1,自引:0,他引:1  
Epithelial cell volume is determined by the concentration of intracellular, osmotically active solutes. The high water permeability of the cell membrane of most epithelia prevents the establishment of large osmotic gradients between the cell and the bathing solutions. Steady-state cell volume is determined by the relative rates of solute entry and exit across the cell membranes. Inhibition of solute exit leads to cell swelling because solute entry continues; inhibition of solute entry leads to cell shrinkage because solute exit continues. Cell volume is then a measure of the rate and direction of net solute movements. Epithelial cells are also capable of regulation of the rate of solute entry and exit to maintain intracellular composition. Feedback control of NaCl entry into Necturus gallbladder epithelial cells is demonstrable after inhibition of the Na,K-ATPase or reduction in the NaCl concentration of the serosal bath. Necturus gallbladder cells respond to a change in the osmolality of the perfusion solution by rapidly regulating their volume to control values. This regulatory behavior depends on the transient activation of quiescent transport systems. These transport systems are responsible for the rapid readjustments of cell volume that follow osmotic perturbation. These powerful transporters may also play a role in steady-state volume regulation as well as in the control of cell pH.  相似文献   

19.
Whole skins and isolated epithelia were bathed with isotonic media (congruent to 244 mOsm) containing sucrose or glucose. The serosal osmolality was intermittently reduced (congruent to 137 mOsm) by removing the nonelectrolyte. Transepithelial and intracellular electrophysiological parameters were monitored while serosal osmolality was changed. Serosal hypotonicity increased the short-circuit current (ISC) and the basolateral conductance, hyperpolarized the apical membrane (psi mc), and increased the intracellular Na+ concentration. The increases in apical conductance and apical Na+ permeability (measured from Goldman fits of the relationship between amiloride-sensitive current and psi mc) were not statistically significant. To verify that the osmotically induced changes in ISC were mediated primarily at the basolateral membrane, the basolateral membrane potential of the experimental area was clamped close to 0 mV by replacing the serosal Na+ with K+ in Cl--free media. The adjoining control area was exposed to serosal Na+. Serosal hypotonicity produced a sustained stimulation of ISC across the control, but not across the adjoining depolarized tissue area. The current results support the concept that hypotonic cell swelling increases Na+ transport across frog skin epithelium by increasing the basolateral K+ permeability, hyperpolarizing the apical membrane, and increasing the electrical driving force for apical Na+ entry.  相似文献   

20.
The cation selectivity of the Na entry mechanism located in the outer membrane of the bullfrog (Rana catesbeiana) skin epithelium was studied. This selectivity was determined by measuring the short-circuit current when all of the external sodium was replaced by another cation and, also, by noting the relative degree of inhibition that the alkali metal cations produced on Na influx. The ability of the Group Ia cations to permeate the apical membrane was determined from the tracer uptake experiments. The results demonstrate that (a) only Li and Na are actively transported through the epithelium; (b) the alkali cations K, Rb, and Cs do not enter the epithelium through the apical border and, therefore, Na and Li are the only alkali cations translocated through this membrane; (c) these impermeable cations are competitive inhibitors of Na entry; (d) the cations NH4 and Tl exhibit more complex behavior but, under well-defined conditions, also inhibit Na entry; and (e) the selectivity of the cation binding site is in the sequence Li congruent to Na > Tl > NH4 congruent to K > Rb > Cs, which corresponds to a high field strength site with tetrahedral symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号