首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we elucidate part of the mechanism of the early stages of the biosynthesis of glycogen. This macromolecule is constructed by covalent apposition of glucose units to a protein, glycogenin, which remains covalently attached to the mature glycogen molecule. We have now isolated, in a 3500-fold purification, a protein from rabbit muscle that has the same Mr as glycogenin, is immunologically similar, and proves to be a self-glucosylating protein (SGP). When incubated with UDP-[14C]glucose, an average of one molecular proportion of glucose is incorporated into the protein, which we conclude is the same as glycogenin isolated from native glycogen. The native SGP appears to exist as a high-molecular-weight species that contains many identical subunits. Because the glucose that is self-incorporated can be released almost completely from the acceptor by glycogenolytic enzymes, the indication is that it was added to a preformed chain or chains of 1,4-linked alpha-glucose residues. This implies that SGP already carries an existing maltosaccharide chain or chains to which the glucose is added, rather than glucose being added directly to protein. The putative role of SGP in glycogen synthesis is confirmed by the fact that glucosylated SGP acts as a primer for glycogen synthase and branching enzyme to form high-molecular-weight material. SGP itself is completely free from glycogen synthase. The quantity of SGP in muscle is calculated to be about one-half the amount of glycogenin bound in glycogen.  相似文献   

2.
We have isolated and purified a cell surface sialoglycopeptide (SGP) from bovine cerebral cortex cells that previously was shown to be a potent inhibitor of cellular protein synthesis. The following studies were carried out to characterize the potential ability of the SGP to inhibit DNA synthesis and to arrest cell division. Treatment of exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a marked inhibition of thymidine incorporation within 24 h. When the SGP was removed from inhibited cultures, a sharp rise in 3H-thymidine incorporation followed within 3-4 h that peaked well above that measured in exponentially growing cultures, suggesting that the inhibitory action of the SGP was reversible and that a significant proportion of the arrested cells was synchronized in the mitotic cycle. In addition to DNA synthesis, the inhibitory action of the SGP was monitored by direct measurement of cell number. Consistent with the thymidine incorporation data, the SGP completely inhibited 3T3 cell division 20 h after its addition to exponentially growing cultures. Upon reversal there was a delay of 15 h before cell division resumed, when the arrested cells quickly doubled. Most, if not all, of the growth-arrested cells appeared to have been synchronized by the SGP. The SGP inhibited DNA synthesis in a surprisingly wide variety of target cells, and the relative degree of their sensitivity to the inhibitor was remarkably similar. Cells sensitive to the SGP ranged from vertebrate to invertebrate cells, fibroblast and epitheliallike cells, primary cells and established cell cultures, as well as a wide range of transformed cell lines.  相似文献   

3.
Glucosamine via GlcNAc is a precursor for the synthesis of glycosaminoglycan (GAG) chains on proteoglycans. We previously found that proteoglycans synthesized and secreted by vascular smooth muscle cells (VSMC) in the presence of supplementary glucosamine had GAG of decreased not increased size. We investigated the possibility that the inhibition of GAG chains synthesis on proteoglycans might be related to cellular ATP depletion. Confluent primate VSMCs were exposed to glucosamine, azide, or 2-deoxyglucose (2-DG). Each of these agents depleted cell ATP content by 25-30%. All agents decreased (35)S-SO(4) incorporation and reduced the size of the proteoglycans, decorin and biglycan as assessed by SDS-PAGE. On withdrawal of the glucosamine, azide or 2-DG ATP levels and proteoglycan synthesis returned towards baseline values. Glucosamine decreased glucose uptake and consumption suggesting that ATP depletion was due preferential phosphorylation of glucosamine over glucose. Thus, glucosamine inhibition of proteoglycan synthesis is due, at least in part, to depletion of cellular ATP content.  相似文献   

4.
The photoaffinity label 8-azido-ATP has been used to study the effect of inhibition of ATP synthase on ATP-driven reverse electron transfer from succinate to NAD+ ('reversal'), succinate- and NADH-driven ATP synthesis and ATP-Pi exchange. In reversal, where ATPase functions as primary proton pump, inactivation by covalently bound nitreno-ATP results in an inhibition that is proportional to the inactivation of ATP hydrolysis, or, consequently, with the concentration of inactivated ATP synthases. Up to 60% inactivation of the reversal rate does not lead to a decrease in delta mu H+. Inhibition of ATP synthase as secondary proton pump results in case of NADH-driven ATP synthesis in a proportional inhibition, but with succinate as substrate ATP synthesis is less than proportionally inhibited, compared with inactivation of ATP hydrolysis. Inhibition of one of the primary pumps of NADH-driven ATP synthesis, the NADH:Q oxidoreductase, with rotenone also resulted in an inhibition of the rate of ATP synthesis proportional to that of the NADH oxidation. ATP-Pi exchange is much more affected than ATP hydrolysis by photoinactivation with 8-azido-ATP. Contrary to reversal and NADH-driven ATP synthesis the rate of ATP-Pi exchange does not depend linearly, but quadratically on the concentration of active ATP synthases. The observed proportional relationships between inhibition of the primary or secondary pump and the inhibition of the overall energy-transfer reactions do not support the existence of a pool intermediate in energy-transduction reactions. However, the results are consistent with a direct transfer of energy from redox enzymes to ATP synthase and vice versa.  相似文献   

5.
Biological enantioenriched chirality is a phenomenon that in living organisms, amino acids and carbohydrates typically have the same absolute configuration. Perhaps one of the earliest attempts to delineate the origins of this phenomenon was a theory known as asymmetric autocatalysis, a reaction in which the structures of the chiral catalyst and the product are the same, and in which the chiral product acts as a chiral catalyst for its own production. In theory, this would mean that small asymmetries in the product will propagate rapidly. However, autocatalysis also relies on the cross‐inhibition of chiral states, something that would not likely be possible on primordial Earth. But recently, theories on asymmetric autocatalysis have begun to resurface as more recent findings indicate that other mechanisms exist to stabilize the homochiral states. In this study, I propose an autocatalytic cycle, and using density functional theory, prove that (1) it is plausible on primordial Earth, and (2) it propagates arbitrary asymmetries in proline. Thus, facilitating asymmetry in proline and allowing access to a wide variety of asymmetric proline‐catalyzed reactions, including those involved in the synthesis of amino acids and carbohydrates from achiral precursors.  相似文献   

6.
Sialoglycopeptide (SGP) is referred as the glycopeptide in hen's egg yolk, which has an N-linked, complex-type, disialyl biantennary oligosaccharide with an alpha-(2-->6)-sialyl N-acetyllactosamine residue. The residue is known as a binding ligand of type-A human influenza virus hemagglutinin. We describe herein a simple synthesis of a sialoglycopolymer with a chitosan backbone as a potent inhibitor of human influenza virus hemagglutination that makes use of the natural source ingredient, SGP, and the transglycosylation activity of endo-beta-N-acetylglucosaminidase from Mucor hiemalis (Endo-M). Its inhibitiory activity for influenza virus hemagglutination is 40 times higher than that of SGP, and its competitive inhibition is determined to be over 300 times higher than that of fetuin. These results indicate that a sialoglycopolymer having a multivalent sialo-oligosaccharide could potentially be used for the prevention of influenza virus infection.  相似文献   

7.
Inhibition of glucose uptake has been proposed as a primary cause of many of the subsequent inhibitory effects of glucocorticoids. This hypothesis has been tested in experiments where adenosine is substituted for glucose. Like glucose, adenosine maximally supports glycolytic and oxidative ATP generation, and by its use the hormonal inhibition of glucose uptake is circumvented. With adenosine, inhibition by cortisol is seen at at least one other metabolic site, respiratory ATP synthesis. This action can be observed by hormone-induced increases in levels of lactate, pyruvate, and AMP that accompany a lowering of ATP. Evidence for this metabolic action is also seen when cells are provided with a limiting amount of glucose; despite inhibition of glucose uptake, a cortisol-induced increase in lactate accompanies the reduction in levels of ATP. Decreased respiratory ATP synthesis is also suggested by a hormonal reduction in the metabolism of labeled exogenous pyruvate to 14CO2. Several experimental approaches suggest that inhibition of oxidative ATP production, rather than of glucose uptake, is the event most responsible for glucocorticoid-induced changes in the balance of adenine nucleotides, which in turn contribute to effects on protein synthesis and uridine uptake. First, the characteristic inhibitory cortisol effects on adenine nucleotides and protein synthesis are undiminished when adenosine is substituted for glucose. Second, in adenosine-supported cells the onset of the hormone-induced increase in levels of lactate corresponds closely to the appearance of measurable reductions in ATP. In contrast, when cells are supported by glucose, the hormonal inhibition of glucose uptake is maximal by 30 to 35 min, nearly an hour before effects on levels of ATP are detectable. Third, when cells are made strongly dependent upon glucose for ATP production by deprivation of exogenous substrate and cortisol is added at 90 min, a characteristic inhibition of the uptake of glucose added 40 min later is seen; nevertheless, this is insufficient to prevent added glucose from immediately and fully restoring ATP, rates of protein synthesis, and uridine uptake. Inhibitory effects on ATP, protein synthesis, and uridine do appear after an additional hour or so, a time commensurate with the development of an inhibition of oxidative metabolism. Fourth, limiting added glucose can reduce uptake more than cortisol, without reducing levels of ATP.  相似文献   

8.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

9.
Adenylate deaminase from rat skeletal muscle has been studied with the objective of understanding how the activity of the enzyme is regulated in vivo. ATP and GTP inhibit the enzyme at low concentrations in the presence of 150 mM KCl. The ATP inhibition is reversed as the ATP concentration is raised to physiological levels. The GTP inhibition is reversed as the GTP concentration is raised to unphysiologically high levels. In the presence of physiological concentrations of ATP, the GTP inhibition is also greatly diminished, but inhibition by orthophosphate remains strong. The apparent affinities of the enzyme for GTP, ATP, and orthophosphate are reduced as the pH is decreased from 7.0 to 6.2. ADP also reduces the apparent affinities of the enzyme for the inhibitors. The regulatory effects of GTP, ATP, and ADP are produced primarily by their unchelated forms. Comparison of the kinetic behavior of the enzyme in vitro with metabolite concentrations in vivo indicates that the major variables that regulate the activity of adenylate deaminase of muscle in vivo are the concentrations of AMP, ADP, orthophosphate, and H+.  相似文献   

10.
Smooth muscle contraction is controlled in part by the state of phosphorylation of myosin. A recently discovered actin and calmodulin-binding protein, named caldesmon, may also be involved in regulation of smooth muscle contraction. Caldesmon cross-links actin filaments and also inhibits actin-activated ATP hydrolysis by myosin, particularly in the presence of tropomyosin. We have studied the effect of caldesmon on the rate of hydrolysis of ATP by skeletal muscle myosin subfragment-1, a system in which phosphorylation of the myosin is not important in regulation. Caldesmon is a very effective inhibitor of ATP hydrolysis giving up to 95% inhibition. At low ionic strength (approximately 20 mM) this effect does not require smooth muscle tropomyosin, whereas at high ionic strength (approximately 120 mM) tropomyosin enhances the inhibitory activity of caldesmon at low caldesmon concentrations. Cross-linking of actin is not essential for inhibition of ATP hydrolysis to occur since at high ionic strength there is very little cross-linking as determined by a low speed sedimentation assay. Under all conditions examined, the decrease in the rate of ATP hydrolysis is accompanied by a decrease in the binding of myosin subfragment-1 to actin. Furthermore, caldesmon weakens the equilibrium binding of myosin subfragment-1 to actin in the presence of pyrophosphate. We conclude that caldesmon has a general weakening effect on the binding of skeletal muscle myosin subfragment-1 to actin and that this weakening in binding may be responsible for inhibition of ATP hydrolysis.  相似文献   

11.
利用ADP和放射性磷直接合成ATP的方法,研究了无机磷(Pi)和叠氮钠对猪心线粒体ATP合成酶(F1FO-ATPase)ATP合成活性的影响.结果发现无机磷除作为合成ATP的底物参与F1FO-ATPase的合成反应外,还对F1FO-ATPase的合成活性呈现抑制作用,在1 mmol/L ADP存在时,随着Pi浓度由0.01~10 mmol/L增加,抑制合成作用越来越强.与叠氮钠在低浓度时(小于1 mmol/L)只抑制ATP水解,不影响ATP合成的观点不同.实验结果显示0.1 mmol/L叠氮钠表观激活F1FO-ATPase的ATP合成活性,且激活程度与反应体系中所加Pi的浓度呈负相关.当固定Pi浓度(0.1 mmol/L)后,随着叠氮钠浓度的增加表观激活程度也在变化,叠氮钠与磷浓度相等时表观激活程度最大,直至叠氮钠浓度接近0.5 mmol/L时,开始呈现表观抑制现象,叠氮钠浓度高于1 mmol/L之后,就出现解偶联现象.  相似文献   

12.
ATP and citrate, the well known inhibitors of phosphofructokinase (ATP: D-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11), were found to inhibit the activities of the multiple forms of phosphoglucomutase (alpha-D-glucose 1,6-bisphosphate: alpha-D-glucose 1-phosphate phosphotransferase, EC 2.7.5.1) from rat muscle and adipose tissue. This inhibition could be reversed by an increase in the glucose 1,6-bisphosphate (Glc-1,6-P2) concentration. Other known activators (deinhibitors) of phosphofructokinase, viz. cyclic AMP, AMP, ADP or Pi, had no direct deinhibitory action on the ATP or citrate inhibited multiple phosphoglucomutases. Cyclic AMP and AMP, could however lead indirectly to deinhibition of the phosphoglucomutases, by activating phosphofructokinase which catalyzes the ATP-dependent phosphorylation of glucose 1-phosphate to form Glc-1,6-P2, the la-ter then released the multiple phosphoglucomutases from ATP or citrate inhibition. The Glc-1,6-P2 was also found to exert a selective inhibitory effect on hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) type II, the predominant form in skeletal muscle. This selective inhibition by Glc-1,6-P2 was demonstrated on the multiple hexokinases which were resolved by cellogel electrophoresis or isolated by chromatography on DEAE-cellulose. Based on the in vitro studies it is suggested that during periods of highly active epinephrine-induced glycogenolysis in muscle, the Glc-1,6-P2, produced by the cyclic AMP-stimulated reaction of phosphofructokinase with glucose 1-phosphate, will release the phosphoglucomutases from ATP or citrate inhibition, and will depress the activity of muscle type II hexokinase.  相似文献   

13.
Phosphofructokinases from rat erythrocytes and rabbit muscle have been compared in their kinetic behavior with respect to monovalent cation activation and ATP inhibition. Both ammonium and potassium ions affect the muscle enzyme in a two-fold manner: they act both as activators and effectors. On the other hand only ammonium exerts the two-fold effects on the erythrocyte enzyme, while the potassium ions activate without affecting cooperativity. The lower ATP inhibition of muscle phosphofructokinase may be partially explained by the action of potassium ions on the cooperative behavior of the enzyme. The differences between the phosphofructokinases from erythrocytes and muscle in the potassium type-II activation and ATP inhibition represent an organ specifity. Furthermore, the inhibition constants for 2, 3-bisphosphoglycerate differ by 10-fold between the two enzymes.  相似文献   

14.
The content of adenosine triphosphate (ATP) in roots of -wheat (Triticum aestivum L.) was determined with the fire-fly-luciferase method. The content is decreased by D-mannose, which inhibits root growth, respiration and chloride uptake. In intact seedlings the inhibition of root growth is relieved by other sugars and also by the flavanone naringenin and by 2,4-dinitrophenol. This reversal is combined with an increased content of ATP. The inhibition of chloride uptake by mannose in excised roots is reversed by some other sugars (including D-galactose which is in itself inhibitory to root growth), and also in this case the ATP content is increased. Naringenin and dinitrophenol do not relieve the inhibition of chloride uptake caused by mannose. Nor do they increase the content of ATP in this case. The primary effect of mannose seems to be inhibition of glycolysis whereas the effect upon root growth is secondary. Galactose, which also inhibits root growth, does not inhibit respiration or reduce the ATP content and the primary effect of galactose (and also of 2-deoxy-D-glucose and 2-deoxy-D-galactose) seems to be on the synthesis of cell wall substances.  相似文献   

15.
Mapping the rubella virus subgenomic promoter   总被引:1,自引:0,他引:1       下载免费PDF全文
Tzeng WP  Frey TK 《Journal of virology》2002,76(7):3189-3201
Rubella virus (RUB), the sole member of the Rubivirus genus in the Togaviridae family of positive-strand RNA viruses, synthesizes a single subgenomic (SG) RNA containing sequences from the 3' end of the genomic RNA including the open reading frame (ORF) that encodes the virion proteins. The synthesis of SG RNA is initiated internally on a negative-strand, genome-length template at a site known as the SG promoter (SGP). Mapping the RUB SGP was initiated by using an infectious cDNA vector, dsRobo402/GFP, in which the region containing the SGP was duplicated (K. V. Pugachev, W.-P. Tzeng, and T. K. Frey, J. Virol. 74:10811-10815, 2000). In dsRobo402/GFP, the 5'-proximal nonstructural protein ORF (NS-ORF) is followed by the first SGP (SGP-1), the green fluorescent protein (GFP) gene, the second SGP (SGP-2), and the structural protein ORF. The duplicated SGP, SGP-2, contained nucleotides (nt) -175 to +76 relative to the SG start site, including the 3' 127 nt of the NS-ORF and 47 nt between the NS-ORF and the SG start site. 5' Deletions of SGP-2 to nt -40 (9 nt beyond the 3' end of the NS-ORF) resulted in a wild-type (wt) phenotype in terms of virus replication and RNA synthesis. Deletions beyond this point impaired viability; however, the analysis was complicated by homologous recombination between SGP-1 and SGP-2 that resulted in deletion of the GFP gene and resurrection of viable virus with one SGP. Since the NS-ORF region was not necessary for SGP activity, subsequent mapping was done by using both replicon vectors, RUBrep/GFP and RUBrep/CAT, in which the SP-ORF is replaced with the reporter GFP and chloramphenical acetyltransferase genes, respectively, and the wt infectious clone, Robo402. In the replicon vectors, 5' deletions to nt -26 resulted in the synthesis of SG RNA. In the infectious clone, deletions through nt -28 gave rise to viable virus. A series of short internal deletions confirmed that the region between nt -28 and the SG start site was essential for viability and showed that the repeated UCA triplet at the 5' end of SG RNA was also required. Thus, the minimal SGP maps from nt -26 through the SG start site and appears to extend to at least nt +6, although a larger region is required for the generation of virus with a wt phenotype. Interestingly, while the positioning of the RUB SGP immediately adjacent the SG start site is thus similar to that of members of the genus Alphavirus, the other genus in the Togaviridae family, it does not include a region of nucleotide sequence homology with the alphavirus SGP that is located between nt -48 and nt -23 with respect to the SG start site in the RUB genome.  相似文献   

16.
1. The in vivo incorporation of radioactivity from [3H]glucosamine into a trypsin labile, cell surface sialoglycopeptide fraction (SGP) of Ehrlich ascites cells was studied in the presence and absence of puromycin pretreatment. The results indicated a much more complete inhibition of incorporation into the surface SGP than in the average intracellular acid insoluble glycoproteins. No evidence of turnover of the carbohydrate portion of the surface SGP independent of protein synthesis could be obtained. 2. However, when intact cells were incubated with labelled uridine 5'-diphosphate-N-actely glucosamine or cytidine 5'-monophosphate (CMP)-sialic acid there was some incorporation largely into acid insoluble material, suggesting the presence of glycosyl transferase activity in the surface. Further evidence for surface activity was obtained when neuraminidase pretreatment of intact cells stimulated incorporation of labelled CMP-sialic acid sixfold and almost all of the incorporated counts could be released by subsequent neuraminidase treatment. Furthermore, a much greater proportion of the incorporated counts could be released by papain than by trypsin treatment of the intact cells. These results suggest that the surface acceptor for exogenously added CMP-sialic acid is not identical to the endogenously synthesized trypsin labile surface SGP.  相似文献   

17.
The photosynthetic machinery and, in particular, the photosystem II (PSII) complex are susceptible to strong light, and the effects of strong light are referred to as photodamage or photoinhibition. In living organisms, photodamaged PSII is rapidly repaired and, as a result, the extent of photoinhibition represents a balance between rates of photodamage and the repair of PSII. In this study, we examined the roles of electron transport and ATP synthesis in these two processes by monitoring them separately and systematically in the cyanobacterium Synechocystis sp. PCC 6803. We found that the rate of photodamage, which was proportional to light intensity, was unaffected by inhibition of the electron transport in PSII, by acceleration of electron transport in PSI, and by inhibition of ATP synthesis. By contrast, the rate of repair was reduced upon inhibition of the synthesis of ATP either via PSI or PSII. Northern blotting and radiolabeling analysis with [(35)S]Met revealed that synthesis of the D1 protein was enhanced by the synthesis of ATP. Our observations suggest that ATP synthesis might regulate the repair of PSII, in particular, at the level of translation of the psbA genes for the precursor to the D1 protein, whereas neither electron transport nor the synthesis of ATP affects the extent of photodamage.  相似文献   

18.
1. The effect was studied of local anesthetics (tetracaine, dibucaine, procaine and xylocaine) on the forward and the backward reactions of the calcium pump of skeletal muscle sarcoplasmic reticulum. 2. The inhibition of the rate of calcium uptake, the rate of calcium-dependent ATP splitting and the rate of calcium-dependent ATP-ADP phosphate exchange by sarcoplasmic reticulum in the presence of the above drugs is at least partially due to the inhibition of the phosphoprotein formation from ATP. 3. The rate of the ADP-induced calcium release from sarcoplasmic reticulum and the rate of ATP synthesis driven by the calcium efflux are inhibited on account of a reduction of the phosphoprotein formation by orthophosphate. 4. The phosphorylation of calcium transport ATPase by either ATP or orthophosphate is diminished by the local anesthetics owing to a reduction in the apparent calcium affinity of sarcoplasmic reticulum emmbranes on the outside and on the inside, respectively. 5. The drug-induced calcium efflux from calcium-preloaded sarcoplasmic reticulum vesicles, a reaction not requiring ADP, is probably not mediated by calcium transport ATPase.  相似文献   

19.
We have previously shown that inhibition of the ATPase activity of skeletal muscle myosin subfragment 1 (S1) by caldesmon is correlated with the inhibition of S1 binding in the presence of ATP or pyrophosphate (Chalovich, J., Cornelius, P., and Benson, C. (1987) J. Biol Chem. 262, 5711-5716). In contrast, Lash et al. (Lash, J., Sellers, J., and Hathaway, D. (1986) J. Biol. Chem. 261, 16155-16160) have shown that the inhibition of ATPase activity of smooth muscle heavy meromyosin (HMM) by caldesmon is correlated with an increase in the binding of HMM to actin in the presence of ATP. We now show, in agreement, that caldesmon does increase the binding of smooth muscle HMM to actin-tropomyosin while decreasing the ATPase activity. The effect of caldesmon on the binding of smooth HMM is reversed by Ca2+-calmodulin. Caldesmon strengthens the binding of smooth S1.ATP and skeletal HMM.ATP to actin-tropomyosin but to a lesser extent than smooth HMM.ATP. Furthermore, this increase in binding of smooth S1.ATP and skeletal HMM.ATP does not parallel the inhibition of ATPase activity. In contrast, in the absence of ATP, all smooth and skeletal myosin subfragments compete with caldesmon for binding to actin. Thus, the effect that caldesmon has on the binding of myosin subfragments to actin-tropomyosin depends on the source of myosin, the type of subfragment, and the nucleotide present. The inhibition of actin-activated ATP hydrolysis by caldesmon, however, is not greatly different for different smooth and skeletal myosin subfragments. Evidence is presented that caldesmon inhibits actin-activated ATP hydrolysis by attenuating the productive interaction between myosin and actin that normally accelerates ATP hydrolysis. The increased binding seen by some myosin subfragments, in the presence of ATP, may be due to binding of these subfragments to a nonproductive site on actin-caldesmon. The subfragments which show an increase in binding in the presence of ATP and caldesmon appear to bind directly to caldesmon as demonstrated by affinity chromatography.  相似文献   

20.
The synthesis of the D1 subunit of the reaction center of photosystemII is light-dependent in isolated chloroplasts. The mechanismof the regulation by light was analyzed using spinach chloroplasts.The light-regulated synthesis of the D1 protein was preventedby the addition of atrazine and the dependence on the concentrationof atrazine of the inhibition was practically identical withthat of the inhibition of photosynthetic electron transportin photosystem II, as measured by the photoreduction of 2,6-dichlorophenolindophenol. Inhibitors of photosynthetic phosphorylation, suchas phloridzin, nigericin and carbonyl cyanide m-chlorophenylhydrazone,also inhibited the light-dependent synthesis of the D1 protein.Determination of the levels of ATP in chloroplasts and the ratesof synthesis of D1 protein under the various degrees of inhibitioncaused by these reagents suggested that the level of ATP inthe soluble, stromal fraction can control the synthesis of theD1 protein. The level of stromal ATP in chloroplasts was furthermanipulated, either by modulating the intensity of actinic lightor by the addition of metabolites, such as glycerate, whichwas used to decrease the level of ATP in the light, and dihydroxyacetonephosphate/oxaloacetate, which was used to raise the level ofATP in the dark. The results definitely support the hypothesisthat the light-induced level of ATP is an essential determinantin the regulation of the synthesis of the D1 protein in isolatedchloroplasts. (Received July 25, 1991; Accepted October 22, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号