首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Initial rates of 59Fe3+ uptake by mouse duodenal fragments (in vitro) and tied-off duodenal segments (in vivo) have been characterised for control and hypoxic animals. 59Fe3+ uptake by duodenal fragments was rapid, selective and dependent on medium Fe3+-nitrilotriacetate concentration. Most of the 59Fe3+ uptake (70-75%) occurred via the mucosal route and was dependent on the metabolic state of the tissue. Mucosal uptake showed an adaptive increase following exposure of animals to 3 days hypoxia; the enhancement was due to a 2-3-fold increase in Vmax app, without any significant changes in the Km app. Studies of upper small intestine transit times showed a mean residence time of 4-5 min for 59Fe-labelled mouse chow, emphasising the importance of initial uptake measurements. Time courses for in vivo total mucosal uptake exhibited linearity over a wide variety of absorption rates after correction for the permeation by intact metal-chelate complex. The corrected uptake showed a hyperbolic dependence on medium Fe3+-nitrilotriacetate concentration. Kinetic studies revealed a 2-3-fold increase in total mucosal uptake in hypoxia. Mucosa-to-carcass transfer of 59Fe was also markedly increased by chronic hypoxia. The in vitro system exhibits similar qualitative and quantitative kinetics for Fe3+ transport via the mucosal membrane to those obtained in vivo. The results observed in vitro are thus valid and provide a convenient method for further studies on Fe3+ transport in animals and in man.  相似文献   

2.
Membrane potential dependence of Fe(III) uptake by mouse duodenum   总被引:1,自引:0,他引:1  
Intestinal iron uptake by mouse duodenal fragments is inhibited in the absence of oxygen and glucose from the incubation medium and by a variety of metabolic inhibitors. The mechanism of energy coupling to iron uptake is, however, unclear. In vitro experiments using duodenal fragments showed Fe3+ uptake to be markedly inhibited, in a reversible fashion, by the replacement of incubation medium Na+ by K+. Addition of phloridzin to the medium failed to affect iron uptake, suggesting that the above effect was not a consequence of reduced glucose uptake. Substitution of Na+ by Rb+ also potently reduced duodenal iron uptake. Replacement of medium NaCl by either mannitol or choline chloride had no significant effect on Fe3+ uptake, thus excluding the possibility of the Fe3+ uptake process being Na+-dependent. Similar observations were made with duodenal fragments from animals with enhanced Fe3+ absorption, due to chronic hypoxia. Valinomycin (1-5 microM) increased the uptake of both glucose and Fe3+. Higher concentrations (22.5 microM) of the ionophore were inhibitory. In vivo studies (tied-off segments) using Rb+-containing medium confirmed the inhibitory effects of univalent cations on Fe3+ absorption. Enhanced absorption of Fe3+ was also demonstrable in vivo, with low concentrations of valinomycin and nigericin added to the luminal medium. These observations suggest that the Fe3+ uptake process may be dependent on the brush-border membrane potential.  相似文献   

3.
Initial rates of mucosal uptake of Fe3+ from luminal Fe3+-nitrilotriacetate solutions by tied segments of mouse intestine in vivo have been measured. Duodenal uptake showed an approximately hyperbolic dependence of uptake on Fe3+ complex concentration (Km(app) 66 microM, Vmax 6.2 pmol/min per mg intestine) with little dependence on nitrilotriacetate:Fe3+ ratio or on added Ca2+. Duodenal uptake was greatly stimulated by hypoxic treatment of mice. Uptake rates by distal ileum were lower than by duodenum and more sensitive to added Ca2+. These results show that isolated duodenal brush-border membrane Fe3+ transport characteristics (Simpson, R.J. and Peters, T.J. (1984) Biochim. Biophys. Acta 772, 220-226) are inadequate to explain duodenal Fe3+ uptake in vivo. However, ileal uptake can be explained by the properties of isolated ileal brush-border membrane (Simpson, R.J., Raja, K.B. and Peters, T.J. (1985) Biochim. Biophys. Acta 814, 8-12).  相似文献   

4.
G Becker  H Huebers  W Rummel 《Blut》1979,38(5):397-406
1. The absorption kinetic of 59Fe-(FeCl3) and 60CO-(CoCl2) 10 min after administration of increasing doses (0.5--1,000 nmoles metal) into tied-off duodenal segments of normal and iron-deficient rats shows saturation characteristic for both metals; in iron-deficient rats the absorption of both metals was enhanced. 2. The addition of increasing amounts of cobalt to the 59Fe-containing test solutions caused a decrease of the absorption of iron. 3. The study of the time dependence of this interaction in iron-deficient rats revealed, that cobalt inhibits the release of iron from mucosal cells into the blood, whereas the uptake of iron from the lumen into the mucosal cells did not differ from the controls without administration of cobalt. 4. The subcellular distribution of 59Fe and 60 Co in mucosal cell homogenates of iron-deficient rats after ultracentrifugation on a polyvinylpyrrolidone-CsCl solution shows a similar pattern for both metals; in the presence of cobalt the subcellular distribution of 59Fe is not changed. 5. From these results the conclusion is drawn that cobalt inhibits iron absorption not by an interference with iron binding sites on or in the luminal membranes of the mucosal cells but by an interaction with the releasing process at the contraluminal side.  相似文献   

5.
The basolateral membrane of mouse duodenal enterocytes can be selectively labelled in vitro with 59Fe by incubating intact enterocytes with 59Fe(III)-nitrilotriacetate at 0-4 degrees C. It has been proposed that this labelling represents binding to a site important in the transfer of intracellular Fe to the portal plasma (Snape, S., Simpson, R.J. and Peters, T.J. (1990) Cell Biochem. Funct. 8, 107-115). Studies presented here show binding to intact enterocytes in vitro was complete within 1 h and was proportional to enterocyte protein concentration. Binding to enterocytes isolated from both normal and chronically hypoxic mice showed a hyperbolic dependence on medium Fe(III) concentration, consistent with a single class of binding sites. Neither apparent binding constant nor maximal binding were increased by hypoxic exposure of mice, suggesting that the increased in vivo labelling of this site in hypoxia is not due to an increase in affinity or capacity of this site for iron. Release of iron from intact enterocytes, labelled at 0-4 degrees C, was measured at 37 degrees C and 0-4 degrees C. Release of 59Fe was extensive and more rapid at 37 degrees C with highest release to mouse serum. Iron released to serum was found to be bound to transferrin. Prior dialysis of serum against buffer led to complete failure of enterocytes to release iron. Reconstituting serum by adding back the dialysate restores release to levels seen in fresh serum, suggesting that low molecular weight serum components, notably bicarbonate, mediate iron transfer from the basolateral membrane to serum transferrin. The properties of the basolateral membrane iron binding site described here are consistent with a role in the iron transfer process.  相似文献   

6.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

7.
Simultaneous measurements of all major electrolytes including HCO3(-) and H+ as well as water demonstrated that fluids absorbed by the anterior intestine of the marine gulf toadfish under in vivo-like conditions on an overall net basis are hypertonic at 380 mOsm and acidic ([H+] = 27 mM). This unusual composition of fluids absorbed across the intestinal epithelium is due to the unusual intestinal fluid chemistry resulting from seawater ingestion and selective ion and water absorption along the gastro-intestinal tract. Measurement under near symmetrical conditions with high NaCl concentrations and low MgSO4 concentrations revealed absorption of iso-osmotic and much less acidic fluids by the intestinal epithelium, a situation resembling that of other water absorbing leaky vertebrate epithelia. Reduced luminal NaCl concentrations seen in vivo results in lower absolute water absorption rates but higher Cl-/HCO3(-) exchange rates which are associated with higher net H+ absorption rates. It appears that apical anion exchange is important for net Cl- uptake by the marine teleost intestine especially when luminal NaCl concentrations are low and/or when MgSO4 concentrations are high. Observations indicate that fluid absorption from solutions of low NaCl but high MgSO4 concentrations is energetically more demanding than absorption from NaCl rich solutions at the level of the intestinal epithelium. Furthermore, the high luminal MgSO4 concentration which is an unavoidable consequence of seawater ingestion projects a demand for renal and branchial compensation for intestinal MgSO4 uptake and absorption of hypertonic and acidic fluid by the intestine.  相似文献   

8.
The results of insulin action (0.4 IU per mouse) are demonstrated in intact animals only. This action leads to a higher uptake of 59Fe. rabbit transferrin of isolated cells from lactating mouse mammary gland. It is suggested that most inactive transferrin receptors in the cell membrane are incorporated by the hormone action or some new receptors are synthesized. On the contrary, adrenaline in a dose 0.5 micrograms per animal demonstrated an opposite effect--a lower uptake of 59Fe. human transferrin from lactating mouse mammary gland. This is probably due to a redistribution of some part (about 28%) of the iron. Instead of flowing to the mammary gland it flows towards other organs for overcoming the stress situation. An alternative explanation could be the inhibition of endogenous insulin secretion by adrenaline. From our data it follows that insulin and adrenaline have an antagonistic effect on regulation of Fe transport in lactating mouse mammary gland.  相似文献   

9.
Initial Fe3+ uptake rates by mouse intestinal fragments were determined in vitro. Uptake was dependent primarily on the Fe3+-nitrilotriacetate complex concentration. Addition of Ca2+ and Mg2+ to the incubation medium had only small effects on the Fe3+ uptake rate. Duodenal fragments from hypoxic animals showed enhanced uptake of Fe3+; this increase was more pronounced with a divalent cation-free medium. Ca2+ markedly diminished the Fe3+ uptake by mucosa from hypoxic mice; Mg2+ had no appreciable effect. Distal ileal fragments exhibited lower uptake rates compared to the duodenum, but were more sensitive to the effects of added Ca2+. The ileal fragments did not show an adaptive response of Fe3+ uptake to hypoxia. These results suggest the existence of more than one pathway for mucosal Fe3+ uptake. One pathway, sensitive to Ca2+ and not stimulated by hypoxia, may be present in the duodenum and ileum. A second pathway, inhibited by Ca2+ and exhibiting an adaptive response to hypoxia, occurs only in the duodenum. This latter pathway is more sensitive to the effects of metabolic inhibitors.  相似文献   

10.
Hereditary hemochromatosis type 3 is an iron (Fe)-overload disorder caused by mutations in transferrin receptor 2 (TfR2). TfR2 is expressed highly in the liver and regulates Fe metabolism. The aim of this study was to investigate duodenal Fe absorption and hepatic Fe uptake in a TfR2 (Y245X) mutant mouse model of hereditary hemochromatosis type 3. Duodenal Fe absorption and hepatic Fe uptake were measured in vivo by 59Fe-labeled ascorbate in TfR2 mutant mice, wild-type mice, and Fe-loaded wild-type mice (2% dietary carbonyl Fe). Gene expression was measured by real-time RT-PCR. Liver nonheme Fe concentration increased progressively with age in TfR2 mutant mice compared with wild-type mice. Fe absorption (both duodenal Fe uptake and transfer) was increased in TfR2 mutant mice compared with wild-type mice. Likewise, expression of genes participating in duodenal Fe uptake (Dcytb, DMT1) and transfer (ferroportin) were increased in TfR2 mutant mice. Nearly all of the absorbed Fe was taken up rapidly by the liver. Despite hepatic Fe loading, hepcidin expression was decreased in TfR2 mutant mice compared with wild-type mice. Even when compared with Fe-loaded wild-type mice, TfR2 mutant mice had increased Fe absorption, increased duodenal Fe transport gene expression, increased liver Fe uptake, and decreased liver hepcidin expression. In conclusion, despite systemic Fe loading, Fe absorption and liver Fe uptake were increased in TfR2 mutant mice in association with decreased expression of hepcidin. These findings support a model in which TfR2 is a sensor of Fe status and regulates duodenal Fe absorption and liver Fe uptake.  相似文献   

11.
The results of our previous studies have suggested that serum-induced inhibition of proximal tubular fluid absorption is due to complement-induced lysis of the tubular cells. The present study provides further evidence in support of this idea as well as other information pertinent to the mechanism of complement activation in vivo. 1. The electrical resistance of the luminal brush border membrane is reduced drastically concomitantly with a drop in cell potential difference when serum is perfused intraluminally. 2. Human C1 inhibitor (30-50 units/ml) does not significantly affect the inhibitory activity of human serum on fluid absorption, suggesting the non-involvement of the classical pathway. 3. Reactive lysis reagents (C56, C7, C8 + C9) partially inhibit fluid absorption when infused into the lumen. 4. In contrast to our previous report (Sato, K. and Ullrich, K.J. (1974) Biochim. Biophys. Acta 354, 182-187), very fresh serum, 10-times diluted can inhibit fluid absorption if perfused for 10 min. 5. Both mouse and guinea pig serum, which are normally inactive, are activated to attack the tubular cells if 1/100 volume rat or rabbit serum is added to them No such activation occurs by mixing guinea pig serum and mouse serum. The available data suggest that the presence of the later complement components but not the heat-labile factor (Factor B) or C3PA or C1 in the added serum is a prerequisite for mouse and guinea pig sera to be activated to inhibit fluid absorption.  相似文献   

12.
59Fe uptake by rabbit reticulocytes from human transferrin-bound iron was studied by using transferrin solutions (35, 50, 65, 80 and 100% saturated with iron) whose only common characteristic was their content of diferric transferrin. During the early incubation period, 59Fe uptake from each preparation by reticulocytes was identical despite wide variations in amounts of total transferrin, total iron, monoferric transferrin and apotransferrin in solution. During the later phase of incubation, rate of uptake declined and was proportional to each solution's monoferric transferrin content. Uptake was also studied in a comparative experiment which used two identical, partially saturated transferrin preparations, one uniformly 59Fe-labelled and the other tracer-labelled with [59Fe]diferric transferrin. In both experiments, iron uptake by reticulocytes corresponded to utilization of a ferric ion from diferric transferrin before utilization of iron from monoferric transferrin.  相似文献   

13.
Rats were studied for [(59)Fe-(125)I]transferrin uptake in total brain, and fractions containing brain capillary endothelial cells (BCECs) or neurons and glia. (59)Fe was transported through BCECs, whereas evidence of similar transport of transferrin was questionable. Intravenously injected transferrin localized to BCECs and failed to accumulate within neurons, except near the ventricles. No significant difference in [(125)I]transferrin distribution was observed between Belgrade b/b rats with a mutation in divalent metal transporter I (DMT1), and Belgrade +/b rats with regard to accumulation in vascular and postvascular compartments. (59)Fe occurred in significantly lower amounts in the postvascular compartment in Belgrade b/b rats, indicating impaired iron uptake by transferrin receptor and DMT1-expressing neurons. Immunoprecipitation with transferrin antibodies on brains from Belgrade rats revealed lower uptake of transferrin-bound (59)Fe. In postnatal (P)0 rats, less (59)Fe was transported into the postvascular compartment than at later ages, suggesting that BCECs accumulate iron at P0. Supporting this notion, an in situ perfusion technique revealed that BCECs accumulated ferrous and ferric iron only at P0. However, BCECs at P0 together with those of older age lacked DMT1. In conclusion, BCECs probably mediate iron transport into the brain by segregating iron from transferrin without involvement of DMT1.  相似文献   

14.
1. The role of specific interaction between transferrin and its receptors in iron uptake by the liver in vivo was investigated using 59Fe-125I-labelled transferrins from several animal species, and adult and 15-day rats. Transferrin-free hepatic uptake of 59Fe was measured 2 or 0.5 hr after intravenous injection of the transferrins. 2. Rat, rabbit and human transferrins gave high and approximately equal levels of hepatic iron uptake while transferrins from a marsupial (Sentonix brachyurus), lizard, crocodile, toad and fish gave very low uptake values. Chicken ovotransferrin resulted in higher uptake than with any other species of transferrin. 3. Iron uptake by the femurs (as a sample of bone marrow erythroid tissue) and, in another group of 19-day pregnant animals by the placentas and fetuses, was also measured, for comparison with the liver results. The pattern of uptake from the different transferrins was found to be similar to that of iron uptake by the liver except that with femurs, placentas and fetuses ovotransferrin gave low values comparable to those of the other non-mammalian species. 4. It is concluded that iron uptake by the liver from plasma transferrin in vivo is largely or completely dependent on specific transferrin-receptor interaction. The high hepatic uptake of iron from ovotransferrin was probably mediated by the asialoglycoprotein receptors on hepatocytes.  相似文献   

15.
The iron chelators desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone (PIH), 2,2-bipyridine, diethylenetriamine penta-acetic acid (DTPA) and 1,2 dimethyl-3-hydroxy pyrid-4-one (CP20) were analysed for their ability to change59Fe uptake and release from the brain of 15- and 63-day rats either during or after intravenous injection of59Fe-125I-transferrin. DTPA was the only chelator unable to significantly reduce iron uptake into the brain of 15-day rats. This indicates that iron is not released from transferrin at the luminal surface of brain capillary endothelial cells. CP20 was able to reduce iron uptake in the brain by 85% compared to 28% with DFO. Only CP20 was able to significantly reduce brain iron uptake in 63 day rats. Once59Fe had entered the brain no chelator used was able to mediate its release. All of the chelators except CP20 had similar effects on femur iron uptake as they did on brain uptake, suggesting similar iron uptake mechanisms. It is concluded that during the passage of transferrin-bound iron into the brain the iron is released from transferrin within endothelial cells after endocytosis of transferrin.  相似文献   

16.
Melanotransferrin (MTf) is a membrane-bound transferrin (Tf) homologue with several characteristics in common with serum Tf. MTf is found at high levels in melanoma cells and previous studies have shown that MTf can bind Fe. In addition, Chinese hamster ovary cells transfected with MTf transport Fe from 59Fe-citrate at greater rates than control cells. However, the role of MTf in the Fe uptake process of human melanoma cells remains unknown. In the present study we have characterized the role of MTf in Fe uptake by SK-Mel-28 melanoma cells in order to understand its function. Initial studies examined whether modulation of intracellular Fe levels using the Fe chelator desferrioxamine (DFO) or the Fe donor ferric ammonium citrate (FAC) could change MTf mRNA levels. In contrast to transferrin receptor (TfR) mRNA that increased after exposure to DFO and decreased after incubation with FAC, there was no change in MTf mRNA levels. In addition, compared to control cells, there was no alteration of 125I-labelled anti-MTf mAb-binding in cells exposed to DFO or FAC, suggesting no change in the number of MTf sites. Further studies examined the ability of DFO and FAC to modulate Fe uptake from 59Fe-citrate which is bound by MTf. In contrast to the effect of DFO or FAC at increasing and decreasing Fe uptake from 59Fe-Tf, respectively, DFO had no influence on 59Fe-citrate uptake, whereas FAC markedly increased it. Collectively, these studies suggest that MTf is not regulated in a manner similar to the TfR in response to cellular Fe levels. MTf can be removed from the membrane by phosphatidylinositol-specific phospholipase C (PtdIns-PLC). Preincubation of melanoma cells with PtdIns-PLC reduced anti-MTf mAb binding to 3% of the control, while PtdIns-PLC only slightly reduced 59Fe uptake from 59Fe-citrate. These results suggest that MTf played only a minor role in Fe uptake from 59Fe-citrate by these cells. The expression of MTf mRNA (poly A+) was also examined in 50 human tissues and found to be markedly different to Tf mRNA or TfR mRNA. Surprisingly, MTf mRNA expression was widespread in normal tissues, and was observed at its highest levels in the salivary gland. In contrast to expectations, MTf mRNA expression was generally greater in adult than fetal tissues.  相似文献   

17.
The subcellular distribution of newly absorbed iron in isolated mouse duodenal enterocytes was investigated by analytical subcellular fractionation using sucrose density gradient centifugation. Two major peaks of mucosal 59Fe activity were observed: one soluble and one particulate (density 1.18-1.20 g ml-1). The latter was increased following prior exposure of animals to chronic hypoxia. The particulate 59Fe was localized to the basolateral membranes using the marker enzyme Na+, K+ activated, Mg2+ dependent, ATPase and by washing intact enterocytes with the selective plasma membrane perturbant digitonin. The basolateral membrane can be selectively labelled by in vitro incubation of intact enterocytes at 0 degrees C with 59Fe(III)-nitrilotriacetate complex, confirming the presence of a 59Fe binding site on this membrane. No significant difference in in vitro iron binding to this site was observed between normal and chronically hypoxic animals. Iron binding to the basolateral membrane was significantly higher in disrupted, compared to intact enterocytes, indicating that this site is present on both sides of the basolateral membrane. It is therefore suggested that the increased labelling of this site in hypoxia, in vivo, is a consequence of an increase in a mucosal Fe pool which is available for binding to a membrane receptor.  相似文献   

18.
Melanotransferrin (MTf) or melanoma tumor antigen p97 is a membrane-bound transferrin (Tf) homologue that binds iron (Fe). This protein is also found as a soluble form in the plasma (sMTf) and was suggested to be an Alzheimer's disease marker. In addition, sMTf has been recently suggested to cross the blood-brain barrier (BBB) and accumulate in the brain of the mouse following intravenous infusion. Considering the importance of this observation to the physiology and pathophysiology of the BBB and the function of sMTf in vivo, we investigated the uptake and distribution of 59Fe-125I-sMTf and compared it to 59Fe-125I-Tf that were injected intravenously in rats. Studies were also performed to measure 59Fe and 125I-protein uptake by reticulocytes using these radiolabelled proteins. The results showed that sMTf was rapidly catabolized, mainly in the liver and to a lesser extent by the kidneys. The 59Fe was largely retained by these organs but the 125I was released into the plasma. Only a small amount of 125I-sMTf or its bound 59Fe was taken up by the brain, less than that from 59Fe-125I-Tf. There was much less 59Fe uptake by erythropoietic organs (spleen and femurs) from 59Fe-sMTf than from 59Fe-Tf, and no evidence of receptor-mediated uptake of sMTf was obtained using reticulocytes. It is concluded that compared to Tf, sMTf plays little or no role in Fe supply to the brain and erythropoietic tissue. However, a small amount of sMTf was taken up from the plasma by the brain and a far greater amount by the liver.  相似文献   

19.
The uptake of inorganic iron complexes by human melanoma cells   总被引:9,自引:0,他引:9  
The human melanoma cell line, SK-MEL-28, expresses high levels of melanotransferrin. The uptake of inorganic iron (Fe) complexes compared to transferrin-bound Fe by these cells has been investigated to determine whether melanotransferrin has a role in Fe uptake. The mechanisms of Fe uptake have been characterised using 59Fe complexes of citrate, nitrilotriacetate, desferrioxamine, and 59Fe added to Eagle's minimum essential medium (MEM) and compared with human transferrin (Tf) labelled with 59Fe and iodine-125. Iron uptake from the Fe complexes of citrate, nitrilotriacetate and MEM were similar, and far greater than that from Tf at the same Fe concentration (2.5 microM). Ammonium chloride and a monoclonal antibody to the transferrin receptor (42/6), had no effect on the uptake of Fe from inorganic Fe complexes, suggesting that receptor-mediated endocytosis of Tf was not involved. The monoclonal antibody, 96.5, specific for melanotransferrin did not alter total Fe uptake but slightly increased the proportion of Fe internalised, possibly due to the modulation of the antigen by the antibody. However, from the time required for modulation to occur (approximately 2 h), the small increase in internalisation observed and the fact that no increase in total cell Fe occurred, it is suggested that melanotransferrin has little role in Fe uptake.  相似文献   

20.
Binding of manganese in human and rat plasma   总被引:5,自引:0,他引:5  
Albumin, transferrin and 'transmanganin' have all been proposed as the major Mn-binding ligand in plasma. The present investigations were initiated in order to resolve these discrepancies. Compared to other metals tested (109 Cd2+, 65Zn2+, 59Fe3+), 54Mn2+ bound poorly to purified albumin. The addition of exogenous albumin to plasma did not result in an increased 54Mn radioactivity associated with this protein. Also, incubation of 65Zn-albumin in the presence of excess Mn2+ (1 mM) did not result in the displacement of Zn from albumin or Mn binding. In contrast to these results, 54Mn was bound to purified transferrin, not as readily as Fe3+, but better than Zn2+ or Cd2+. Saturation of transferrin with Fe3+ (1.6 micrograms Fe/mg) prevented the binding of 54Mn indicating that Mn probably binds to Fe-binding sites on the protein. Polyacrylamide gel electrophoresis further demonstrated the association of 54Mn with transferrin rather than with albumin in both human and rat plasma. The amount of 54Mn radioactivity recovered with transferrin increased as incubation time was increased, probably due to oxidation of Mn2+ to Mn3+. Mn binding to transferrin reached a maximum within 5 and 12 h of incubation. About 50% of 54Mn migrated with transferrin, whereas only 5% was associated with albumin. A significant portion (20-55%) of the 54Mn radioactivity migrated with electrophoretically slow plasma components whose identity was not determined. Possibilities include alpha 2-macroglobulin, heavy gamma-globulins and/or heavy lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号