首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Thirteen ColE plasmids representing the E2-E7 types have been compared by restriction mapping. Over 80% of their restriction sites were found to be similarly positioned, indicating that these plasmids share a common structure. Three variants are ColE2-CA42 and ColE7-K317, both of which contain 1.8-kb DNA segments in place of a 2.5-kb segment common to the other plasmids, and ColE6-CT14, which has an additional 5.0-kb DNA segment compared to the other plasmids. The colicin (col), immunity (imm), and colicin release (hic) genes of these plasmids have been localized to regions corresponding to those known for ColE3-CA38 and ColE2-P9, with the imm and hic genes adjacent to the 3' end of the col gene. Active colicin is produced from hybrid col genes containing 5' and 3' ends from different E-type plasmids. The 3'-termini of the fused col genes specify the colicin type.  相似文献   

2.
Papillomaviruses induce benign squamous epithelial lesions that infrequently are associated with uncontrolled growth or malignant conversion. The virus-encoded oncogenes are clearly under negative regulation since papillomaviruses can latently infect cells and since different levels of viral oncogene expression are seen within the layers of differentiating infected epitheliomas. We used bovine papillomavirus type 1 (BPV-1) to investigate the mechanisms involved in the negative regulation of transformation. We found that the following two distinct and interacting mechanisms negatively regulate BPV-1 transformation effected by virally encoded trans-acting factors: (i) E2 repressors suppress transformation by the E6 and E7 oncogenes, and (ii) E1 and the E2 transactivator suppress transformation by the E6, E7, and E5 oncogenes. These systems interact in that the E2 repressors function to relieve the transformation suppression effected by the E1 and E2 transactivator genes. A BPV-1 mutant that lacked E2 repressors and E1 had greatly augmented transformation capacity. Analysis of this mutant revealed that the enhanced transformation was due to expression of the E6 and E7 genes in the absence of E5, revealing a previously unappreciated potency and synergy for the BPV-1 E6 and E7 oncogenes.  相似文献   

3.
为探讨长穗偃麦草E染色体在硬粒小麦背景中的传递特点,利用染色体特异分子标记、基因组原位杂交(GISH)、非变性荧光原位杂交(ND FISH)等方法,对小偃麦8801(AABBEE)与硬粒小麦(AABB)杂交后代中选育的株系Du_No.2和Du_No.4进行了分析。结果表明:(1)分子标记检测株系Du_No.2及Du_No.4分别能扩增出长穗偃麦草2E、4E染色体特异条带。(2)GISH和ND FISH分析显示,株系Du_No.2和Du_No.4分别附加了1条2E和4E染色体,表明株系Du_No.2 和Du_No.4分别为硬粒小麦 长穗偃麦草2E和4E单体附加系。(3)2个株系的减数分裂过程观察发现,后期Ⅰ、Ⅱ和末期Ⅱ都有E染色体分离异常现象,且株系Du_No.2和 Du_No.4的异常率分别为22.24%和36.18%。(4)2个株系分别与硬粒小麦进行正反杂交的后代PCR分析表明, 2E和4E染色体经雄配子的传递率分别为4.41%和2.17%,而通过雌配子的传递率都为零,表明2E和4E染色体在硬粒小麦背景中能通过雄配子传递,但不通过雌配子的传递。该研究为创建全套硬粒小麦 长穗偃麦草双体附加系及代换系提供基础。  相似文献   

4.
5.
6.
7.
Human seminal fluid was recently found to contain 18,19-dehydroprostaglandins E1 and E2 (E. H. Oliw, H. Sprecher, and M. Hamberg, (1986) J. Biol. Chem. 261, 2675-2683). In the present study, the cis and trans isomers of 18,19-dehydroprostaglandins E1 and E2 were prepared by incubation of microsomes of ram vesicular glands and glutathione with the precursor fatty acids, 8(Z),11(Z),14(Z),18(E/Z)-eicosatetraenoic acids, and 5(Z),8(Z),11(Z),14(Z),18(E/Z)-eicosapentaenoic acids, and used as references to characterize the 18,19-dehydroprostaglandins of human seminal fluid. Based on separation by reversed-phase high-performance liquid chromatography, capillary gas chromatography-mass spectrometry, and ozonolysis of the (-)-menthoxycarbonyl derivatives and on comparison with the authentic compounds, human seminal fluid was found to contain both the cis and trans isomers of 18,19-dehydroprostaglandins E1 and E2. Furthermore, human seminal fluid contained two related compounds, viz. 19,20-dehydroprostaglandins E1 and E2. The structures of these compounds were established by conversion into the corresponding prostaglandin B compounds, by mass spectrometric analysis and by chemical degradation by oxidative ozonolysis, which afforded, inter alia, 2(S)-hydroxy-adipic acid.  相似文献   

8.
9.
10.
H Kunze  R B Ghooi  E Bohn  D Le-Kim 《Prostaglandins》1976,12(6):1005-1017
Prostaglandins E1 (PGE1) and E2 (PGE2) have been coupled with the amine group of phosphatidylethanolamine (PE) by means of dicyclohexylcarbodiimide. These complexes basically mimic the relaxant and contractile effects of the corresponding free prostaglandins (PGs) on various smooth muscle preparations, but exhibit a delayed onset of action and a lower affinity for the PG receptors. The complexes are comparable with the free, parent PGs, in their intrinsic activities. The same holds true for the effects on blood pressure and on the motility of the uterus in situ. The PGE2-PE complex is hydrolysed to release obviously free PGE2 by cell-free homogenates prepared from various tissues, but not by blood plasma. The PGE2-PE complex is immunologically indistinguishable from the free PGE2.  相似文献   

11.
Formation of leukotrienes E3, E4 and E5 in rat basophilic leukemia cells   总被引:1,自引:0,他引:1  
Rat basophilic leukemia (RBL-1) cells incubated with ionophore A23187 and 5,8,11-eicosatrienoic acid produced three slow-reacting substances identified as leukotrienes C3, D3 and E3 by spectroscopic, chromatographic and enzymatic methods. 5,8,11,14,17-Eicosapentaenoic acid was similarly converted by RBL-1 cells to leukotrienes C5, D5. and E5. Leukotrienes C4, D4 and E4 were also formed in these experiments from endogenous arachidonic acid. Time-course studies, incubations with 3H-labeled leukotriene C3 and effects of acivicin [L-(alpha S, 5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid; a gamma-glutamyl transpeptidase inhibitor] indicated that leukotrienes C and D are intermediates in the formation of leukotrienes E. L-Cysteine enhanced the conversion of leukotriene C3 to leukotriene D3 and inhibited further degradation of leukotriene D3 to leukotriene E3.  相似文献   

12.
Recent studies have identified a family of DNA-binding proteins that share a common DNA-binding and dimerization domain with the potential to form a helix-loop-helix (HLH) structure. Various HLH proteins can form heterodimers that bind to a common DNA sequence, termed the E2-box. We demonstrate here that E2-box-binding B-cell- and myocyte-specific nuclear factors contain subunits which are identical or closely related to ubiquitously expressed (E12/E47) HLH proteins. These biochemical function for E12/E47-like molecules in mammalian differentiation, similar to the genetically defined function of daughterless in Drosophila development.  相似文献   

13.
There are three major apolipoprotein E (apoE) isoforms. Although APOE-epsilon3 is considered a longevity gene, APOE-epsilon4 is a dual risk factor to atherosclerosis and Alzheimer disease. We have expressed full-length and N- and C-terminal truncated apoE3 and apoE4 tailored to eliminate helix and domain interactions to unveil structural and functional disturbances. The N-terminal truncated apoE4-(72-299) and C-terminal truncated apoE4-(1-231) showed more complicated or aggregated species than those of the corresponding apoE3 counterparts. This isoformic structural variation did not exist in the presence of dihexanoylphosphatidylcholine. The C-terminal truncated apoE-(1-191) and apoE-(1-231) proteins greatly lost lipid binding ability as illustrated by the dimyristoylphosphatidylcholine turbidity clearance. The low density lipoprotein (LDL) receptor binding ability, determined by a competition binding assay of 3H-LDL to the LDL receptor of HepG2 cells, showed that apoE4 proteins with N-terminal (apoE4-(72-299)), C-terminal (apoE4-(1-231)), or complete C-terminal truncation (apoE4-(1-191)) maintained greater receptor binding abilities than their apoE3 counterparts. The cholesterol-lowering abilities of apoE3-(72-299) and apoE3-(1-231) in apoE-deficient mice were decreased significantly. The structural preference of apoE4 to remain functional in solution may explain the enhanced opportunity of apoE4 isoform to display its pathophysiologic functions in atherosclerosis and Alzheimer disease.  相似文献   

14.
X Wu  W Xiao    J L Brandsma 《Journal of virology》1994,68(9):6097-6102
The present study used the cottontail rabbit papillomavirus DNA-rabbit system to evaluate whether the regulatory genes E1 and E2 and the transforming gene E6 are required for papilloma formation. Frameshift mutations were generated in the individual genes in the context of a full-length cottontail rabbit papillomavirus genome, and the mutant DNAs were intradermally inoculated into domestic rabbits. None of the mutants induced papillomas. Marker rescue experiments confirmed that the defects were due to mutations that we deliberately introduced. Marker rescue also confirmed our previous report that the upstream region of E7 around position 9 was critical for papilloma induction. These results demonstrate that the E1 and E2 regulatory genes as well as the E6 and E7 transforming genes are each required for papilloma formation. Each gene may provide molecular targets for therapeutic intervention.  相似文献   

15.
Summary Dihaploids (n=2x=14, SY) of two Elymus species, i.e., E. dolichatherus (Keng) Löve (2n=4x=28, SSYY) and E. brevipes (Keng) Löve (2n=4x=28, SSYY), were obtained from the interspecific hybrid combinations E. dolichatherus () x E. tibeticus (Meld.) G. Singh () and E. brevipes () x E. panormitanus (Parl.) Tzvelev (). The dihaploids were probably formed through selective elimination of male parental chromosomes in early embryo development. Meiotic chromosome behavior was studied in E. dolichatherus, E. brevipes, and their dihaploids. The two parental Elymus species had regular meioses with predominantly ring bivalent formation. A low frequency of homoeologous chromosome pairing was observed, with an average of 0.81 bivalents and 0.03 trivalents in the dihaploid of E. dolichatherus, and 0.26 bivalents in the dihaploid of E. brevipes. Up to two chromatid bridges accompanied by small fragments were present at anaphase I of the E. dolichatherus dihaploid. It is concluded from this study that: (i) both E. dolichatherus and E. brevipes are allotetraploid species; (ii) a low affinity exists between the S and Y genomes of the two Elymus species.  相似文献   

16.

Background and Aims

The timing of flowering has a direct impact on successful seed production in plants. Flowering of soybean (Glycine max) is controlled by several E loci, and previous studies identified the genes responsible for the flowering loci E1, E2, E3 and E4. However, natural variation in these genes has not been fully elucidated. The aims of this study were the identification of new alleles, establishment of allele diagnoses, examination of allelic combinations for adaptability, and analysis of the integrated effect of these loci on flowering.

Methods

The sequences of these genes and their flanking regions were determined for 39 accessions by primer walking. Systematic discrimination among alleles was performed using DNA markers. Genotypes at the E1E4 loci were determined for 63 accessions covering several ecological types using DNA markers and sequencing, and flowering times of these accessions at three sowing times were recorded.

Key Results

A new allele with an insertion of a long interspersed nuclear element (LINE) at the promoter of the E1 locus (e1-re) was identified. Insertion and deletion of 36 bases in the eighth intron (E2-in and E2-dl) were observed at the E2 locus. Systematic discrimination among the alleles at the E1E3 loci was achieved using PCR-based markers. Allelic combinations at the E1E4 loci were found to be associated with ecological types, and about 62–66 % of variation of flowering time could be attributed to these loci.

Conclusions

The study advances understanding of the combined roles of the E1E4 loci in flowering and geographic adaptation, and suggests the existence of unidentified genes for flowering in soybean,  相似文献   

17.
18.
The literature data concerning the participation of tocopherol in apoptosis are discussed. Acting as antioxidant this vitamin exerts a complex effect on apoptosis mechanisms. Its action on this process is caused by involvement of some different mechanisms transducing the apoptotic signal. Among them are caspase and Fas-receptor activation, sphingosine metabolism, processes carried out in nuclei and mitochondria and signal transduction pathways. The specific mechanisms connected with interaction of this vitamin with tocopherol-binding proteins may be also involved in this vitamin action.  相似文献   

19.
Apolipoprotein E and atherosclerosis   总被引:11,自引:0,他引:11  
Apolipoprotein E plays a key protective role in atherosclerosis. Its capacity to safeguard against this disease can be attributed to at least three distinct functions. First, plasma apolipoprotein E maintains overall plasma cholesterol homeostasis by facilitating efficient hepatic uptake of lipoprotein remnants. Second, lesion apolipoprotein E in concert with apolipoprotein A-I facilitates cellular cholesterol efflux from macrophage foam cells within the intima of the lesion. Third, lesion apolipoprotein E directly modifies both macrophage- and T lymphocyte-mediated immune responses that contribute to this chronic inflammatory disease.  相似文献   

20.
Isogenic, E3-deleted adenovirus vectors defective in E1, E1 and E2A, or E1 and E4 were generated in complementation cell lines expressing E1, E1 and E2A, or E1 and E4 and characterized in vitro and in vivo. In the absence of complementation, deletion of both E1 and E2A completely abolished expression of early and late viral genes, while deletion of E1 and E4 impaired expression of viral genes, although at a lower level than the E1/E2A deletion. The in vivo persistence of these three types of vectors was monitored in selected strains of mice with viral genomes devoid of transgenes to exclude any interference by immunogenic transgene-encoded products. Our studies showed no significant differences among the vectors in the short-term maintenance and long-term (4-month) persistence of viral DNA in liver and lung cells of immunocompetent and immunodeficient mice. Furthermore, all vectors induced similar antibody responses and comparable levels of adenovirus-specific cytotoxic T lymphocytes. These results suggest that in the absence of transgenes, the progressive deletion of the adenovirus genome does not extend the in vivo persistence of the transduced cells and does not reduce the antivirus immune response. In addition, our data confirm that, in the absence of transgene expression, mouse cellular immunity to viral antigens plays a minor role in the progressive elimination of the virus genome.Replication-deficient human adenoviruses (Ad) have been widely investigated as ex vivo and in vivo gene delivery systems for human gene therapy. The ability of these vectors to mediate the efficient expression of candidate therapeutic or vaccine genes in a variety of cell types, including postmitotic cells, is considered an advantage over other gene transfer vectors (3, 28, 49). However, the successful application of currently available E1-defective Ad vectors in human gene therapy has been hampered by the fact that transgene expression is only transient in vivo (2, 15, 16, 33, 36, 46). This short-lived in vivo expression of the transgene has been explained, at least in part, by the induction in vivo of cytotoxic immune responses to cells infected with the Ad vector. Studies with rodent systems have suggested that cytotoxic T lymphocytes (CTLs) directed against virus antigens synthesized de novo in the transduced tissues play a major role in eliminating cells containing the E1-deleted viral genome (5658, 61). Consistent with the concept of cellular antiviral immunity, expression of transgenes is significantly extended in experimental rodent systems that are deficient in various components of the cellular immune system or that have been rendered immunocompromised by administration of pharmacological agents (2, 33, 37, 48, 60, 64).Based on the assumption that further reduction of viral antigen expression may lower the immune response and thus extend persistence of transgene expression, previous studies have investigated the consequences of deleting both E1 and an additional viral regulatory region, such as E2A or E4. The E2A region encodes a DNA binding protein (DBP) with specific affinity for single-stranded Ad DNA. The DNA binding function is essential for the initiation and elongation of viral DNA synthesis during the early phase of Ad infection. During the late phase of infection, DBP plays a central role in the activation of the major late promoter (MLP) (for a recent review, see reference 44). The E4 region, located at the right end of the viral genome, encodes several regulatory proteins with pleiotropic functions which are involved in the accumulation, splicing, and transport of early and late viral mRNAs, in DNA replication, and in virus particle assembly (reviewed in reference 44). The simultaneous deletion of E1 and E2A or of E1 and E4 should therefore further reduce the replication of the virus genome and the expression of early and late viral genes. Such multidefective vectors have been generated and tested in vitro and in vivo (9, 12, 17, 1921, 23, 24, 26, 34, 40, 52, 53, 59, 62, 63). Recombinant vectors with E1 deleted and carrying an E2A temperature-sensitive mutation (E2Ats) have been shown in vitro to express much smaller amounts of virus proteins, leading to extended transgene expression in cotton rats and mice (19, 20, 24, 59). To eliminate the risks of reversion of the E2Ats point mutation to a wild-type phenotype, improved vectors with both E1 and E2A deleted were subsequently generated in complementation cell lines coexpressing E1 and E2A genes (26, 40, 63). In vitro analysis of human cells infected by these viruses demonstrated that the double deletion completely abolished viral DNA replication and late protein synthesis (26). Similarly, E1/E4-deleted vectors have been generated in various in vitro complementation systems and tested in vitro and in vivo (9, 17, 23, 45, 52, 53, 62). These studies showed that deletion of both E1 and E4 did indeed reduce significantly the expression of early and late virus proteins (17, 23), leading to a decreased anti-Ad host immune response (23), reduced hepatotoxicity (17, 23, 52), and improved in vivo persistence of the transduced liver cells (17, 23, 52).Interpretation of these results is difficult, however, since all tested E1- and E1/E4-deleted vectors encoded the bacterial β-galactosidase (βgal) marker, whose strong immunogenicity is known to influence the in vivo persistence of Ad-transduced cells (32, 37). Moreover, the results described above are not consistent with the conclusions from other studies showing, in various immunocompetent mouse models, that cellular immunity to Ad antigens has no detectable impact on the persistence of the transduced cells (37, 40, 50, 51). Furthermore, in contrast to results of earlier studies (19, 20, 59), Fang et al. (21) demonstrated that injection of E1-deleted/E2Ats vectors into immunocompetent mice and hemophilia B dogs did not lead to an improvement of the persistence of transgene expression compared to that with isogenic E1-deleted vectors. Similarly, Morral et al. (40) did not observe any difference in persistence of transgene expression in mice injected with either vectors deleted in E1 only or vectors deleted in both E1 and E2A. Finally, the demonstration that some E4-encoded products can modulate transgene expression (1, 17, 36a) makes the evaluation of E1- and E1/E4-deleted vectors even more complex when persistence of transgene expression is used for direct comparison of the in vivo persistence of cells transduced by the two types of vectors.The precise influence of the host immune response to viral antigens on the in vivo persistence of the transduced cells, and hence the impact of further deletions in the virus genome, therefore still remains unclear. To investigate these questions, we generated a set of isogenic vectors with single deletions (AdE1°) and double deletions (AdE1°E2A° and AdE1°E4°) and their corresponding complementation cell lines and compared the biologies and immunogenicities of these vectors in vitro and in vivo. To eliminate any possible influence of transgene-encoded products on the interpretation of the in vivo results, we used E1-, E1/E2A-, and E1/E4-deleted vectors with no transgenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号