首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Wilson disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver and subsequently in the brain and other organs. On the basis of sequence homology to known genes, the WD gene (ATP7B) appears to be a copper-transporting P-type ATPase. A search for ATP7B mutations in WD patients from five population samples, including 109 North American patients, revealed 27 distinct mutations, 18 of which are novel. A composite of published findings shows missense mutations in all exons-except in exons 1-5, which encode the six copper-binding motifs, and in exon 21, which spans the carboxy-terminus and the poly(A) tail. Over one-half of all WD mutations occur only rarely in any population sample. A splice-site mutation in exon 12 accounts for 3% of the WD mutations in our sample and produces an in-frame, 39-bp insertion in mRNA of patients homozygous, but not heterozygous, for the mutation. The most common WD mutation (His1069Glu) was represented in approximately 38% of all the WD chromosomes from the North American, Russian, and Swedish samples. In several population cohorts, this mutation deviated from Hardy-Weinberg equilibrium, with an overrepresentation of homozygotes. We did not find a significant correlation between His1069Glu homozygosity and several clinical indices, including age of onset, clinical manifestation, ceruloplasmin activity, hepatic copper levels, and the presence of Kayser-Fleischer rings. Finally, lymphoblast cell lines from individuals homozygous for His1069Glu and 4 other mutations all demonstrated significantly decreased copper-stimulated ATPase activity.  相似文献   

2.
Ferenci P 《Human genetics》2006,120(2):151-159
Wilson disease is an autosomal recessive inherited disorder of copper metabolism. The Wilson disease gene codes for a copper transporting P-type ATPase (ATP7B). Molecular genetic analysis reveals at least 300 distinct mutations. While most reported mutations occur in single families, a few are more common. The most common mutation in patients from Central, Eastern, and Northern Europe is the point mutation H1069Q (exon 14). About 50–80% of Wilson disease (WD) patients from these countries carry at least one allele with this mutation with an allele frequency ranging between 30 and 70%. Other common mutations in Central and Eastern Europe are located on exon 8 (2299insC, G710S), exon 15 (3400delC) and exon 13 (R969Q). The allele frequency of these mutations is lower than 10%. In Mediterranean countries there is a wide range of mutations, the frequency of each of them varies considerably from country to country. In Sardinia, a unique deletion in the 5′ UTR (−441/−427 del) is very frequent. In mainland Spain the missense mutation M645R in exon 6 is particularly common. Data from non-European countries are scarce. Most data from Asia are from Far Eastern areas (China, South Korea and Japan) where the R778L missense mutation in exon 8 is found with an allele frequency of 14–49%. In summary, given the constant improvement of analytic tools genetic testing will become an integral part for the diagnosis of WD. Knowledge of the differences in the worldwide distribution of particular mutations will help to design shortcuts for genetic diagnosis of WD.  相似文献   

3.
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism resulting from the absence or dysfunction of a copper transporting P-type ATPase (ATP7B). Approximately 150 mutations of the ATP7B have been identified to date. In this paper, we report the results of molecular characterization and genotype-phenotype analysis, which we have carried out on 35 patients from Yugoslavia affected by WD. Using single-strand conformational polymorphism (SSCP) followed by direct sequencing, we characterized the molecular defect in 80% of WD chromosomes and found 11 different mutations, three of which are novel. The most common mutations that accounted for the molecular defect in 71.3% of WD chromosomes were H1069Q (48.9%), 2304-2305insC (11.4%), R616Q (5.7%), and A1003T (5.7%). The results produced in this paper indicate that the best strategy for mutation detection in Yugoslavian patients with WD is an SSCP analysis of exons 14, 8, 5, and 13, where most of the defects (73.1%) lie, followed by mutation analysis of the remaining exons in ATP7B in patients in whom the mutation was not detected by the finitial screening. These data can be used to develop straightforward genetic testing in this population or in other countries composed of a genetically mixed population like the United States, where a significant number of immigrants came from Central and Eastern Europe.  相似文献   

4.
Wilson disease (WD) is an autosomal recessive disorder of copper biliary excretion caused by an impaired function of ATP7B, a metal-transporting P-type ATPase encoded by WD gene. It results in copper accumulation, mostly in liver and brain tissues. Mutation analysis was carried out on 11 WD French unrelated patients presenting a predominant neurological form of this illness. SSCP and dHPLC analysis followed by sequencing of the 21 exons and their flanking introns were performed. Thirteen different mutations in a total of 17, and, among them, 10 novel variants were evidenced. Two deletions (c.654_655delCC and c.1745_1746delTA), 4 missense mutations (p.F763Y, p.G843R, p.D918A and p.L979Q), 1 nonsense mutation (p.Q1200X), 1 splice site mutation (c.1947-1G>C) and 2 intronic silent substitutions (c.2448-25G>T and c.3412+13T>A) were detected. These data extend the mutational spectrum of the disease, already known to be a very heterogeneous genetic disorder. As compared to hepatic manifestations, the phenotypes associated to these mutations confirm that neurological presentations associated with other mutations than p.H1069Q are also often late in their onset. Most of these neurological forms probably correspond to an attenuated impairment of copper metabolism, as compared to hepatic forms of the disease, mostly diagnosed earlier.  相似文献   

5.
To find an explanation for survival of homozygous or compound heterozygous variants of acute intermittent porphyria, we studied the three mutant forms of porphobilinogen deaminase (PBG-d) described in the four reported patients with homozygous acute intermittent porphyria. Wild-type human PBG-d and the PBG-d R167W, R167Q and R173Q mutants were expressed in Escherichia coli and the recombinant mutant human enzyme were examined for enzyme activity. Specific antibodies against human PBG-d detected the three human PBG-d mutants. All three had less than 2% of wild-type enzyme activity when examined under customary assay conditions (pH 8.0), but the R167W and R167Q mutants were found to have about 25% of normal activity when assayed at pH 7.0. This residual activity at a more physiological pH provides an explanation for survival when these mutations are inherited in a homozygous or compound heterozygous fashion.  相似文献   

6.
Familial Mediterranean fever (FMF) is characterized by recurrent fever, serositis, and arthritis. Due to the abundance of mutations and clinical heterogeneity of the disease, different screening methods have been developed. In this study, we aimed to compare our findings of mutations determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with reverse hybridization (RH) methods. In 152 of 263 patients (57.79%) different mutations were determined with RH. Allelic frequencies were E148Q 6.84%, M680I(G/C) 3.61%, M694V 20.91%, V726A 7.03%, P369S 1.33%, F479L 0.19%, M680I(G/A) 0.76%, M694I 0.57%, K695R 0.57%, A744S 0.38%, R731H 0.38%, and del1692 0%. Frequent mutations were also confirmed by PCR-RFLP. There were no conflicting results between the two methods. Four of these genotypes were homozygous for a single mutation, 15 were heterozygous for two mutations, 8 were heterozygous for a single mutation, 1 was heterozygous for three mutations, and 1 was homozygous for one mutation and heterozygous for another mutation. It has been reported that analytical sensitivity of RH is 97%. We did not find a discrepancy between the two methods. In 21 patients, we detected additional mutations with RH. This finding was regarded as an advantage of RH, and we concluded that this assay is a useful method for detection of first stage FMF mutation screening.  相似文献   

7.
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism characterized by hepatic and/or neurological damage. More than 300 mutations in gene ATP7B causing this defect have been reported. The data on correlation between WD patient genotypes and clinical presentation are controversial. In this paper, the results of ATP7B mutation analysis by testing for mutation H1069Q and direct sequencing of six exons together with the clinical data of 40 Latvian WD patients are presented. Two previously described and two novel mutations as well as one previously reported polymorphism were identified. The H1069Q mutation was present at 52.5% of the disease alleles. One individual among 157 healthy Latvians was also found to be a mutation H1069Q carrier. The estimated incidence of WD in Latvia is ∼1 in 25600. Wide clinical variability was observed among individuals with the same ATP7B genotype, thus supporting the suggestion that modifying factors play an additional role in the pathogenesis of WD. An algorithm for the diagnosis of WD, including testing for mutation H1069Q, is recommended for the populations where mutation H1069Q accounts for 50% of WD alleles or more. The text was submitted authors English.  相似文献   

8.
Wilson disease (WD) is an autosomal recessive disorder of hepatic copper metabolism caused by mutations in a gene encoding a copper-transporting P-type ATPase, ATP7B. The majority of known mutations affecting this gene are frequent in different populations, which may help to introduce rapid diagnostic procedures based on direct DNA analysis into routine clinical practise. The His1069Gln mutation in exon 14 is the most frequent one, accounting for 30-60% of all mutations in Caucasian patients. The aim of the present work was to introduce DNA-based direct analysis into routine molecular screening for the above mutation in Slovak WD patients and to assess its frequency in patients as well as in a control population. Twenty seven clinicaly diagnosed patients from twenty five families, twenty relatives of index patients and three hundred and six control DNA samples were tested using two different DNA-based methods: the earlier described amplification created restriction site (ACRS) for Alw21I in combination with nested PCR and the amplification refractory mutation system (ARMS). In 18 of 25 unrelated patients (72%), the mentioned genetic defect was present in at least one copy. In ten of them (40%), the above mutation was detected in homozygous and in eight individuals (32%) in heterozygous state. In seven WD patients (28%), this mutation was not detected. The allele frequency of His1069Gln in Slovak patients with WD was 56%, which was higher as reported in other populations. In a control group of 306 random DNA samples (612 alleles), the His1069Gln mutation was observed in 3 samples (carrier frequency 1%; allele frequency 0.49%). These frequencies correspond to figures observed in different population of European origin. Taken together, we have provided further evidence that the His1069Gln mutation is the prevalent ATP7B mutation in central-european WD patients. Although both methods used in this study worked in our hands reliably, there are in every-day use some drawbacks and limitations inherent to them (PCR reactions in two tubes, possibility of star activity or not complet digestion by restriction endonuclease, etc.). Therefore we developed a simpler, cost effective and rapid DNA diagnostic test based on bidirectional amplification of specific alleles (BI-PASA), which enables detection of homozygotes (wild and mutant) and heterozygotes, respectivelly, in one PCR reaction. The test was highly sensitive and specific, yielding no false-positive or false-negative results. Its reliability and discriminating power was tested on samples of 27 WD patients and 120 random control DNA's, previously genotyped by above mentioned methods. Comparing results of BI-PASA with ACRS and ARMS tests showed 100% concordance.  相似文献   

9.
Mutation analysis of Taiwanese Wilson disease patients   总被引:5,自引:0,他引:5  
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper-transporting ATPase (ATP7B). In the present study, we report a molecular diagnosis method to screen the WD chromosome in patients or in heterozygotic carriers in Taiwan. Exons 8, 11, 12, 13, 16, 17, and 18 of ATP7B are selected for the screening of mutations. The most common mutation, Arg778Leu or Arg778Gln, was first screened by PCR-RFLP then we combined single-stranded conformation polymorphism (SSCP) analysis followed by direct DNA sequencing on the DNA fragments with mobility shift on SSCP analysis. The diagnostic rate was compared with standard ATP7B whole gene sequencing analysis. Ten different mutations were identified among 29 WD patients; among them four were novel (Ala1168Pro, Thr1178Ala, Ala1193Pro, and Pro1273Gln). The false positive rates were tested against 100 normal individuals and listed as follows: exon 8: 5%; exon 11: 4%; exon 12: 6%; exon 13: 5%; exon 16: 5%; exon 17: 3%; exon 18: 4%. The Arg778Leu mutation exhibited the highest allelic frequency (43.1%). The detection rate of WD chromosomes is 65.52%, which is as sensitive as whole gene sequencing scanning. According to our results, WD chromosomes in Taiwan are predominantely located at exons 8, 11, 12, 13, 16, 17, and 18. The standard sequencing analysis on the entire gene is time consuming. We recommend screening these 7 exons first on those individuals who have a higher risk in having WD, before whole gene and promoter sequencing analysis in Taiwan.  相似文献   

10.
Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.  相似文献   

11.
Human cardiac Troponin I (cTnI) is the first sarcomeric protein for which mutations have been associated with restrictive cardiomyopathy. To determine whether five mutations in cTnI (L144Q, R145W, A171T, K178E, and R192H) associated with restrictive cardiomyopathy were distinguishable from hypertrophic cardiomyopathy-causing mutations in cTnI, actomyosin ATPase activity and skinned fiber studies were carried out. All five mutations investigated showed an increase in the Ca2+ sensitivity of force development compared with wild-type cTnI. The two mutations with the worst clinical phenotype (K178E and R192H) both showed large increases in Ca2+ sensitivity (deltapCa50 = 0.47 and 0.36, respectively). Although at least one of these mutations is not in the known inhibitory regions of cTnI, all of the mutations investigated caused a decrease in the ability of cTnI to inhibit actomyosin ATPase activity. Mixtures of wild-type and mutant cTnI showed that cTnI mutants could be classified into three different groups: dominant (L144Q, A171T and R192H), equivalent (K178E), or weaker (R145W) than wild-type cTnI in actomyosin ATPase assays in the absence of Ca2+. Although most of the mutants were able to activate actomyosin ATPase similarly to wild-type cTnI, L144Q had significantly lower maximal ATPase activities than any of the other mutants or wild-type cTnI. Three mutants (L144Q, R145W, and K178E) were unable to fully relax contraction in the absence of Ca2+. The inability of the five cTnI mutations investigated to fully inhibit ATPase activity/force development and the generally larger increases in Ca2+ sensitivity than observed for most hypertrophic cardiomyopathy mutations would likely lead to severe diastolic dysfunction and may be the major physiological factors responsible for causing the restrictive cardiomyopathy phenotype in some of the genetically affected individuals.  相似文献   

12.
Wilson disease (WD) is a disorder of copper metabolism caused by mutations in the Cu-transporting ATPase ATP7B. WD is characterized by significant phenotypic variability, the molecular basis of which is poorly understood. The E1064A mutation in the N-domain of ATP7B was previously shown to disrupt ATP binding. We have now determined, by NMR, the structure of the N-domain containing this mutation and compared properties of E1064A and H1069Q, another mutant with impaired ATP binding. The E1064A mutation does not change the overall fold of the N-domain. However, the position of the α1,α2-helical hairpin (α-HH) that houses Glu(1064) and His(1069) is altered. The α-HH movement produces a more open structure compared with the wild-type ATP-bound form and misaligns ATP coordinating residues, thus explaining complete loss of ATP binding. In the cell, neither the stability nor targeting of ATP7B-E1064A to the trans-Golgi network differs significantly from the wild type. This is in a contrast to the H1069Q mutation within the same α-HH, which greatly destabilizes protein both in vitro and in cells. The difference between two mutants can be linked to a lower stability of the α-HH in the H1069Q variant at the physiological temperature. We conclude that the structural stability of the N-domain rather than the loss of ATP binding plays a defining role in the ability of ATP7B to reach the trans-Golgi network, thus contributing to phenotypic variability in WD.  相似文献   

13.
Familial hypercholesterolemia (FH) (OMIM 143890) is an autosomal dominantly inherited disease mainly caused by mutations of the gene encoding the low density lipoprotein receptor (LDLR) and Apolipoprotein (Apo) B. First the common mutation R3500Q in ApoB gene was determined using PCR/RFLP method. Then the LDLR gene was screened for mutations using Touch-down PCR, SSCP and sequencing techniques. Furthermore, the secondary structure of the LDLR protein was predicted with ANTHEPROT5.0. The R3500Q mutation was absent in these two families. A heterozygous p.W483X mutation of LDLR gene was identified in family A which caused a premature stop codon, while a homozygous mutation p.A627T was found in family B. The predicted secondary structures of the mutant LDLR were altered. We identified two known mutations (p.W483X, p.A627T) of the LDLR gene in two Chinese FH families respectively.  相似文献   

14.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.  相似文献   

15.
Wilson disease (WND), an autosomal recessive disorder of copper transport with a broad range of genotypic and phenotypic characteristics, results from mutations in the ATP7B gene. ATP7B encodes a copper transporting P-type ATPase involved in the transport of copper into the plasma protein ceruloplasmin, and for excretion of copper from the liver. Defects in ATP7B lead to copper storage in liver, brain and kidney. Mutation analysis was carried out on 300 WND patients of various origins, and new mutations not previously reported were identified: European white (p.L217X, c.918_931, c.1073delG, c.3082_3085delAAGAinsCG, p.V536A, p.S657R, p.A971V, p.T974M, p.Q1004P, p.D1164N, p.E1173G, p.I1230V, p.M1359I, c.2355+4A>G), Sephardic Jewish (p.Q286X), Filipino (p.G1149A), Lebanese (p.R1228T), Japanese (p.D1267V) and Taiwanese (p.A1328T). All but one missense variant have strong evidence for classification as disease-causing mutations. In the patients reported here, we also identified 20 nucleotide substitutions, six not previously reported, which cause silent amino acid changes or intronic changes. Documentation and characterization of all variants is essential for accurate DNA diagnosis in WND because of the wide range of clinical and biochemical variability.  相似文献   

16.
Sporadic hemiplegic migraine type 2 (SHM2) and familial hemiplegic migraine type 2 (FHM2) are rare forms of hemiplegic migraine caused by mutations in the Na+,K+-ATPase α2 gene. Today, more than 70 different mutations have been linked to SHM2/FHM2, randomly dispersed over the gene. For many of these mutations, functional studies have not been performed. Here, we report the functional characterization of nine SHM2/FHM2 linked mutants that were produced in Spodoptera frugiperda (Sf)9 insect cells. We determined ouabain binding characteristics, apparent Na+ and K+ affinities, and maximum ATPase activity. Whereas membranes containing T345A, R834Q or R879W possessed ATPase activity significantly higher than control membranes, P796S, M829R, R834X, del 935–940 ins Ile, R937P and D999H membranes showed significant loss of ATPase activity compared to wild type enzyme. Further analysis revealed that T345A and R879W showed no changes for any of the parameters tested, whereas mutant R834Q possessed significantly decreased Na+ and increased K+ apparent affinities as well as decreased ATPase activity and ouabain binding. We hypothesize that the majority of the mutations studied here influence interdomain interactions by affecting formation of hydrogen bond networks or interference with the C-terminal ion pathway necessary for catalytic activity of Na+,K+-ATPase, resulting in decreased functionality of astrocytes at the synaptic cleft expressing these mutants.  相似文献   

17.
Human wild-type cardiac troponin T, I, C and five troponin T mutants (I79N, R92Q, F110I, E244D, and R278C) causing familial hypertrophic cardiomyopathy were expressed in Escherichia coli, and then were purified and incorporated into rabbit cardiac myofibrils using a troponin exchange technique. The Ca2+-sensitive ATPase activity of these myofibrillar preparations was measured in order to examine the functional consequences of these troponin mutations. An I79N troponin T mutation was found to cause a definite increase in Ca2+ sensitivity of the myofibrillar ATPase activity without inducing any significant change in the maximum level of ATPase activity. A detailed analysis indicated the inhibitory action of troponin I to be impaired by the I79N troponin T mutation. Two more troponin T mutations (R92Q and R278C) were also found to have a Ca2+-sensitizing effect without inducing any change in maximum ATPase activity. Two other troponin T mutations (F110I and E244D) had no Ca2+-sensitizing effects on the ATPase activity, but remarkably potentiated the maximum level of ATPase activity. These findings indicate that hypertrophic cardiomyopathy-linked troponin T mutations have at least two different effects on the Ca2+-sensitive ATPase activity, Ca2+-sensitization and potentiation of the maximum level of the ATPase activity.  相似文献   

18.
In order to determine the phenylketonuria (PKU) mutation spectrum in the population of Minas Gerais State, Brazil, 78 unrelated PKU patients found by the neonatal screening program from 1993 to 2003 were tested for nine phenylalanine hydroxylase mutations. These mutations were selected due to their high frequencies in other Brazilian populations and in Portugal, where the largest contingent of the Caucasian component of the Brazilian population originated from. The most frequent mutations were V388M (21%), R261Q (16%), IVS10nt11 (13.4%), I65T (5.7%), and R252W (5%). The frequencies of the other four mutations (R261X, R408W, Y414C, and IVS12nt1) did not reach 2%. By testing these nine mutations, we were able to identify 64% of the PKU alleles in our sample. V388M frequency was higher than in any other known population and almost three times larger than that observed in Portugal, probably reflecting genetic drift. The mutation profile, as well as the relative frequency of the different mutations, suggest that the Minas Gerais population more closely resembles that of Portugal than do the other Brazilian populations that have already been tested.  相似文献   

19.
20.
Copper transport by the P(1)-ATPase ATP7B, or Wilson disease protein (WNDP),1 is essential for human metabolism. Perturbation of WNDP function causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the WNDP nucleotide-binding domain (N-domain), where they are predicted to disrupt ATP binding. The mechanism by which the N-domain coordinates ATP is presently unknown, because residues important for nucleotide binding in the better characterized P(2)-ATPases are not conserved within the P(1)-ATPase subfamily. To gain insight into nucleotide binding under normal and disease conditions, we generated the recombinant WNDP N-domain and several WD mutants. Using isothermal titration calorimetry, we demonstrate that the N-domain binds ATP in a Mg(2+)-independent manner with a relatively high affinity of 75 microm, compared with millimolar affinities observed for the P(2)-ATPase N-domains. The WNDP N-domain shows minimal discrimination between ATP, ADP, and AMP, yet discriminates well between ATP and GTP. Similar results were obtained for the N-domain of ATP7A, another P(1)-ATPase. Mutations of the invariant WNDP residues E1064A and H1069Q drastically reduce nucleotide affinities, pointing to the likely role of these residues in nucleotide coordination. In contrast, the R1151H mutant exhibits only a 1.3-fold reduction in affinity for ATP. The C1104F mutation significantly alters protein folding, whereas C1104A does not affect the structure or function of the N-domain. Together, the results directly demonstrate the phenotypic diversity of WD mutations within the N-domain and indicate that the nucleotide-binding properties of the P(1)-ATPases are distinct from those of the P(2)-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号