首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the highest freeze tolerance, particularly in the 24-h exposure period. Unlike desiccation tolerance, substantial intraspecies variation in freeze tolerance was observed among H. bacteriophora and S. riobrave strains, yet within species variation was not detected among S. carpocapsae strains. Correlation analysis did not detect a relationship between freezing and desiccation tolerance.  相似文献   

2.
We compared the longevity of 29 strains representing 11 entomopathogenic nematode species in soil over 42 to 56 d. A series of five laboratory experiments were conducted with six to eight nematode strains in each and one or more nematode strains in common, so that qualitative comparisons could be made across experiments. Nematodes included Heterorhabditis bacteriophora (four strains), H. indica (Homl), H. marelatus (Point Reyes), H megidis (UK211), H. mexicana (MX4), Steinernema carpocapsae (eight strains), S. diaprepesi, S. feltiae (SN), S. glaseri (NJ43), S. rarum (17C&E), and S. riobrave (nine strains). Substantial within-species variation in longevity was observed in S. carpocapsae, with the Sal strain exhibiting the greatest survival. The Sal strain was used as a standard in all inter-species comparisons. In contrast, little intra-species variation was observed in S. riobrave. Overall, we estimated S. carpocapsae (Sal) and S. diaprepesi to have the highest survival capability. A second level of longevity was observed in H. bacteriophora (Lewiston), H. megidis, S. feltiae, and S. riobrave (3–3 and 355). Lower levels of survivability were observed in other H. bacteriophora strains (Hb, HP88, and Oswego), as well as S. glaseri and S. rarum. Relative to S. glaseri and S. rarum, a lower tier of longevity was observed in H. indica and H. marelatus, and in H. mexicana, respectively. Although nematode persistence can vary under differing soil biotic and abiotic conditions, baseline data on longevity such as those reported herein may be helpful when choosing the best match for a particular target pest.  相似文献   

3.
Entomopathogenic nematodes (EPNs) from the families Steinernematidae and Hererorhabditidae are considered excellent biological control agents against many insects that damage the roots of crops. In a regional survey, native EPNs were isolated, and laboratory and greenhouse experiments were conducted to determine the infectivity of EPNs against the cucurbit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Preliminary experiments showed high virulence by a native strain of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and a commercial strain of Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae). These two strains were employed for further analysis while another native species, Steinernema feltiae, was excluded due to low virulence. In laboratory experiments, larvae and adult flies were susceptible to nematode infection, but both nematode species induced low mortality on pupae. S. carpocapsae had a significantly lower LC50 value against larvae than H. bacteriophora in filter paper assays. Both species of EPNs were effective against adult flies but S. carpocapsae caused higher adult mortality. When EPN species were applied to naturally infested fruit (150 and 300 IJs/cm2), the mortality rates of D. ciliatus larvae were 28% for S. carpocapsae and 12% for H. bacteriophora. Both EPN strains successfully reproduced and emerged from larvae of D. ciliates. In a greenhouse experiment, H. bacteriophora and S. carpocapsae had similar effects on fly larvae. Higher rates of larval mortality were observed in sandy loam and sand soils than in clay loam. The efficacy of S. carpocapsae and H. bacteriophora was higher at 25 and 30°C than at 19°C. The results indicated that S. carpocapsae had the best potential as a biocontrol agent of D. ciliatus, based on its higher virulence and better ability to locate the fly larvae within infected fruits.  相似文献   

4.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

5.
The plum curculio, Conotrachelus nenuphar, is a major pest of pome and stone fruit. Our objective was to determine virulence and reproductive potential of six commercially available nematode species in C. nenuphar larvae and adults. Nematodes tested were Heterorhabditis bacteriophora (Hb strain), H. marelatus (Point Reyes strains), H. megidis (UK211 strain), Steinernema riobrave (355 strain), S. carpocapsae (All strain), and S. feltiae (SN strain). Survival of C. nenuphar larvae treated with S. feltiae and S. riobrave, and survival of adults treated with S. carpocapsae and S. riobrave, was reduced relative to non-treated insects. Other nematode treatments were not different from the control. Conotrachelus nenuphar larvae were more susceptible to S. feltiae infection than were adults, but for other nematode species there was no significant insect-stage effect. Reproduction in C. nenuphar was greatest for H. marelatus, which produced approximately 10,000 nematodes in larvae and 5,500 in adults. Other nematodes produced approximately 1,000 to 3,700 infective juveniles per C. nenuphar with no significant differences among nematode species or insect stages. We conclude that S. carpocapsae or S. riobrave appears to have the most potential for controlling adults, whereas S. feltiae or S. riobrave appears to have the most potential for larval control.  相似文献   

6.
Steinernema carpocapsae (Breton strain), S. glaseri, and Heterorhabditis bacteriophora were evaluated for their potential to control immature stages of the Japanese beetle, Popillia japonica, on Terceira Island (the Azores). In bioassays carried out at temperatures higher than 15 C, S. glaseri and H. bacteriophora caused 100% mortality of larvae, whereas S. carpocapsae caused 56% larval mortality. At temperatures slightly below 15 C, only S. glaseri remained effective. In field plots, in September, S. glaseri and S. carpocapsae reduced larval populations by 91% and 44%, respectively, when applied at the rate of 10⁶ nematodes/m². In April, S. glaseri caused 31% reduction in numbers of larvae, but S. carpocapsae was ineffective. In colder months (November-February) neither steinernematids nor H. bacteriophora reduced larval populations. Increasing the application rate from 10⁶ to 5 x 10⁶ infective stage S. glaseri per m² increased efficacy from 63% to 79% mortality.  相似文献   

7.
We examined the influence of insect cadaver desiccation on the virulence and production of entomopathogenic nematodes (EPNs), common natural enemies of many soil-dwelling insects. EPNs are often used in biological control, and we investigated the feasibility of applying EPNs within desiccated insect cadavers. Desiccation studies were conducted using the factitious host, Galleria mellonella (Lepidoptera: Pyralidae, wax moth larvae) and three EPN species (Heterorhabditis bacteriophora ‘HB1’, Steinernema carpocapsae ‘All’, and Steinernema riobrave). Weights of individual insect cadavers were tracked daily during the desiccation process, and cohorts were placed into emergence traps when average mass losses reached 50%, 60%, and 70% levels. We tracked the proportion of insect cadavers producing infective juveniles (IJs), the number and virulence of IJs produced from desiccated insect cadavers, and the influence of soil water potentials on IJ production of desiccated insect cadavers. We observed apparent differences in the desiccation rate of the insect cadavers among the three species, as well as apparent differences among the three species in both the proportion of insect cadavers producing IJs and IJ production per insect cadaver. Exposure of desiccated insect cadavers to water potentials greater than −2.75 kPa stimulated IJ emergence. Among the nematode species examined, H. bacteriophora exhibited lower proportions of desiccated insect cadavers producing IJs than the other two species. Desiccation significantly reduced the number of IJs produced from insect cadavers. At the 60% mass loss level, however, desiccated insect cadavers from each of the three species successfully produced IJs when exposed to moist sand, suggesting that insect cadaver desiccation may be a useful approach for biological control of soil insect pests.  相似文献   

8.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

9.
The effect of temperature on the infection of larvae of the greater wax moth, Galleria mellonella, by Heterorhabditis megidis H90 and Steinernema carpocapsae strain All, was determined. For both species, infection, reproduction, and development were fastest at 20 to 24 °C. Infection by both H. megidis and S. carpocapsae occurred between 8 and 16 °C; however, neither species reproduced at 8 °C. Among the nematodes used in experiments at 8 °C, no H. megidis and very few S. carpocapsae developed beyond the infective juvenile stage. Compared with H. megidis, S. carpocapsae invaded and killed G. mellonella larvae faster at 8 to 16 °C. By comparing invasion rates, differences in infectivity between the two nematode species were detected that could not be detected in conventional petri dish bioassays where mortality was measured after a specified period. Invasion of G. mellonella larvae by H. megidis was faster at 24 than at 16 °C.  相似文献   

10.
Steinernema carpocapsae (Weiser) strain A11, S. feltiae (Filipjev) strain SN, and Heterorhabditis bacteriophora Poinar strains HP88 and Georgia were tested for their efficacy as biological control agents of the pecan weevil, Curculio caryae (Horn), in pecan orchard soil-profile containers under greenhouse conditions. Percentage C. caryae parasitism by S. carpocapsae and H. bacteriophora strain HP88 and Georgia was consistently poor when applied either prior to or following C. caryae entry into the soil, suggesting that these nematode species and (or) their enterobacteria are poor biological control agents of weevil larvae. Soil taken 21 days following application of S. carpocapsae or H. bacteriophora strain HP88 induced a low rate of infection of Galleria mellonella larvae, whereas soil that had been similarily treated with H. bacteriophora strain Georgia induced a moderate rate of infection. Percentage C. caryae parasitism by S. feltiae was consistently low when applied following C. caryae entry into the soil and was inconsistent when applied as a barrier prior to entry of weevil larvae into the soil. Soil taken 21 days following application of S. feltiae induced a high rate of infection of G. mellonella larvae.  相似文献   

11.
《Journal of Asia》2022,25(1):101874
Virulence and invasion efficiency of the three entomopathogenic nematodes, Heterorhabditis bacteriophora, Steinernema carpocapsae and S. feltiae against the potato tuber moth (PTM), Phthorimaea operculella was evaluated. Also evaluated were the sex ratio of Steinernema spp. and host stages to determine if 1) the developmental stage of the host affects sex ratio of nematodes; 2) infective juveniles (IJs) concentration affects sex ratio in host developmental stages and 3) the establishment of IJs is affected by developmental stages of host. The PTM pre-pupa and pupa were exposed to IJs in filter substrate petri dish bioassays. By increasing the IJs concentrations, the number of established Steinernema spp. in both PTM stages increased and only decreased at the highest concentration. No reduction in established nematode numbers at the highest concentration was observed for H. bacteriophora. Sex ratio of S. carpocapsae in pre-pupa was affected by IJ concentration. PTM was more susceptible to Steinernema spp. than H. bacteriophora. Pre-pupa were more susceptible to S. feltiae but S. carpocapsae recorded as the most virulent EPN on pupa. Invasion efficiencies were similar for Steinernema and considerably higher than for H. bacteriophora. Despite a higher invasion efficiency of Steinernema into pupae, mortality was lower compared to pre-pupa No correlation was recorded between the invasion efficiencies of the EPNs and mortalities of PTM. The results showed that the invasion efficiency is not appropriate criterion to reflect the virulence of studied EPNs. Compared to H. bacteriophora both tested Steinernema spp. were good candidates for further studies as biocontrol agents of PTM.  相似文献   

12.
Injection, contact, and soil assays were used to compare infectivity of Heterorhabditis bacteriophora strain HP88 and Steinernema carpocapsae strain All to final instar Galleria mellonella larvae. Under comparable assay conditions, H. bacteriophora produced less Galleria mortality and showed greater within-assay variability in infectivity than S. carpocapsae. Injection of individual S. carpocapsae or H. bacteriophora infective juveniles into Galleria indicated that a comparatively greater percentage of S. carpocapsae was capable of initiating infection. In addition to nematode species, other major components of variability in assay estimations of nematode infectivity were number of nematodes used in the assay, assay type, date of the assay, and possibly, Galleria age.  相似文献   

13.
Entomopathogenic nematodes are used for biological control of insect pests. A method for improved cryopreservation of infective juvenile stage nematodes has been developed using Steinernema carpocapsae and Heterorhabditis bacteriophora. Optimum survival for both species was achieved with 12,000 infective juveniles/ml in glycerol and 7,500/ml in Ringer''s solution. For S. carpocapsae, maximum survival also was observed with 60,000 infective juveniles/ml in glycerol and 25,000/ml in Ringer''s solution. These concentrations resulted in 100% post-cryopreservation survival of S. carpocapsae and 100% retention of original virulence to Galleria mellonella larvae. This is the first report of achieving 100% survival of an entomopathogenic nematode after preservation in liquid nitrogen. Maximum survival of H. bacteriophora following cryopreservation was 87%.  相似文献   

14.
Our overall goal was to investigate several aspects of pecan weevil, Curculio caryae, suppression with entomopathogenic nematodes. Specifically, our objectives were to: 1) determine optimum moisture levels for larval suppression, 2) determine suppression of adult C. caryae under field conditions, and 3) measure the effects of a surfactant on nematode efficacy. In the laboratory, virulence of Heterorhabditis megidis (UK211) and Steinernema carpocapsae (All) were tested in a loamy sand at gravimetric water contents of negative 0.01, 0.06, 0.3, 1.0, and 15 bars. Curculio caryae larval survival decreased as moisture levels increased. The nematode effect was most pronounced at –0.06 bars. At –0.01 bars, larval survival was ≤5% regardless of nematode presence, thus indicating that intense irrigation alone might reduce C. caryae populations. Overall, our results indicated no effect of a surfactant (Kinetic) on C. caryae suppression with entomopathogenic nematodes. In a greenhouse test, C. caryae larval survival was lower in all nematode treatments compared with the control, yet survival was lower in S. carpocapsae (Italian) and S. riobrave (7–12) treatments than in S. carpocapsae (Agriotos), S. carpocapsae (Mexican), and S. riobrave (355) treatments (survival was reduced to approximately 20% in the S. riobrave [7–12] treatment). A mixture of S. riobrave strains resulted in intermediate larval survival. In field experiments conducted over two consecutive years, S. riobrave (7–12) applications resulted in no observable control, and, although S. carpocapsae (Italian) provided some suppression, treatment effects were generally only detectable one day after treatment. Nematode strains possessing both high levels of virulence and a greater ability to withstand environmental conditions in the field need to be developed and tested.  相似文献   

15.
The biological traits of the entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, against the larvae of the leopard moth, Zeuzera pyrina were evaluated in the laboratory. The traits included pathogenicity, penetration potential as well as foraging behaviour. Plate assays were performed using a range of EPN concentrations (5, 10, 20, 50 and 100 infective juveniles (IJs) per larva). The LC50 values for S. carpocapsae and H. bacteriophora were 6.4 and 8.4 IJs larva?1 after 72 h. Both EPN species caused high mortality in branch experiments. Significantly higher mortality rates occurred in the larger larvae after exposure to S. carpocapsae. Both EPN species successfully penetrated the Z. pyrina larvae as well as larvae of Galleria mellonella L. (Lepidoptera: Galleridae).The proportional response of H. bacteriophora to host-associated cues was strongly higher than S. carpocapsae in Petri dishes containing agar 1, 12 and 24 h after EPN application. These results highlight the efficiency of EPNs for the control of Z. pyrina larvae. However, due to the cryptic habitat of Z. pyrina larvae in their galleries in the trees, field trails need to be conducted to further evaluate this potential.  相似文献   

16.
A method for the cryopreservation of third-stage infective juveniles (IJ) of Steinernema carpocapsae and Heterorhabiditis bacteriophora was developed. Cryoprotection was achieved by incubating the nematodes in 22% glycerol (S. carpocapsae) or 14% glycerol (H. bacteriophora) for 24 hours, followed by 70% methanol at 0 C for 10 minutes. The viability of S. carpocapsae frozen in liquid nitrogen as 20 μl volumes spread over cover slip glass was > 80%. Survival of H. bacteriophora frozen on glass varied from 10 to 60% but was improved to > 80% by replacing the glass with filter paper. Cryopreservation and storage of 1-ml aliqots of S. carpocapsae IJ resulted in > 50% survival after 8 months; pathogenicity was retained and normal in vitro development took place. Trehalose and glycerol levels increased and glycogen levels decreased during incubation of S. carpocapsae IJ in glycerol. Normal levels of trehalose, glycerol and glycogen were restored during post freezing rehydration.  相似文献   

17.
The infectivities of Steinernema carpocapsae, S. glaseri, S. scapterisci, and Heterorhabditis bacteriophora to Japanese beetle larvae, Popillia japonica, and house cricket adults, Acheta domesticus, were compared using external exposure and hemocoelic injection. Only H. bacteriophora and S. glaseri caused high P. japonica mortality after external exposure. When nematodes were injected, P. japonica had a strong encapsulation and melanization response to all species except S. glaseri. Heterorhabditis bacteriophora and S. carpocapsae were able to overcome the immune response, but S. scapterisci was not. All species except S. scapterisci were able to kill and reproduce within the host. Only S. scapterisci and S. carpocapsae caused A. domesticus mortality after external exposure. When nematodes were injected, A. domesticus had a strong immune response to all species except S. scapterisci. Steinernema carpocapsae effectively overcame the strong immune response and caused high host mortality, but S. glaseri and H. bacteriophora did not. Steinernema scapterisci caused high host mortality and reproduced, S. glaseri and H. bacteriophora caused low host mortality but only S. glaseri reproduced, and S. carpocapsae was able to kill the host but reproduced poorly. Most (ca. 90%) of the S. carpocapsae in the hemocoel of P. japonica became encapsulated and melanized within 8 hours postinjection. The symbiotic bacterium, Xenorhabduf nematophilus, was often released before this encapsulation and melanization.  相似文献   

18.
Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode’s symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent. S. carpocapsae was the most virulent to T. molitor. In summary, the H. floridensis strains possess a wide niche breadth in temperature tolerance and have virulence and desiccation levels that are similar to a number of other entomopathogenic nematodes. The strains may be useful for biocontrol purposes in environments where temperature extremes occur within short durations.  相似文献   

19.
Five field surveys for indigenous entomopathogenic nematodes (EPNs) were conducted in 22 semi-natural and 17 small-holder farming habitats across 16 districts of different altitudes in the northern, eastern, southern and Kigali city provinces of Rwanda. In 2014, 216 mixed soil samples were collected and subsamples thereof baited with Galleria mellonella or Tenebrio molitor larvae. Five samples from five locations and habitats were positive for nematodes (2.8%). Nine nematode species/strains were isolated and five successfully maintained. DNA sequence comparisons and morphological examinations revealed Steinernema carpocapsae, Heterorhabditis bacteriophora, as well as two steinernematids and one heterorhabditid with no species designation. The isolates (strains) were named Steinernema sp. RW14-M-C2a-3, Steinernema sp. RW14-M-C2b-1, Steinernema carpocapsae RW14-G-R3a-2, H. bacteriophora RW14-N-C4a and Heterorhabditis sp. RW14-K-Ca. These are the first records of naturally occurring EPNs in Rwanda. It is also the first record of S. carpocapsae from Africa. Finding H. bacteriophora from tropical rather than temperate Africa was surprising. The found nematodes will serve as the basis for efficacy screening, and for mass production in a biocontrol agent factory at Rubona Research Centre of the Rwanda Agriculture Board with the ultimate aim of delivering effective, safe and environmentally benign pest control for soil-inhabiting pests.  相似文献   

20.
In two studies to estimate sampling requirements for entomogenous nematodes in the field, highest persistence of Heterorhabditis bacteriophora after application occurred beneath the canopies of mature citrus trees. Nematode persistence declined with distance from the center-line of the tree row toward the row-middles. Immediately after nematode application to soil, 32 samples (15 cm deep, 2.5-cm diameter) beneath a single tree were required to derive 95% confidence intervals that were within 40% of mean nematode population density. The estimated probability of measuring the mean density within 40%, using 32 samples, declined to 88% at 2 days post-application and to 76% at 7 days. The persistence in soil of Steinernema carpocapsae, S. riobravis, and two formulations containing H. bacteriophora and their efficacy against the larvae of Diaprepes abbreviatus were compared in a grove of 4-year-old citrus trees. Within 6 days, the recovered population densities of all nematodes declined to <5% of levels on day 0. The recovery of H. bacteriophora during the first 2 weeks was lower than that of the other two species. Steinemema riobravis and both formulations of H. bacteriophora reduced recovery of D. abbreviatus by more than 90% and 50%, respectively. Steinernema carpocapsae did not affect population levels of the insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号