共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
To obtain insight into which subpopulations of sensory neurons in dorsal root ganglia are supported by different neurotrophins, we retrogradely labeled cutaneous and muscle afferents in embryonic day 9 chick embryos and followed their survival in neuron-enriched cultures supplemented with either nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3). We found that NGF is a wide survival factor for subpopulations of both cutaneous and muscle afferents, whereas the survival effects of BDNF and NT-3 are restricted primarily to muscle afferents. We also measured soma size in each neurotrophic factor. These new data show that BDNF- and NT-3–dependent cells appear to be a mixture of two populations of neurons: one small diameter and the other large diameter. In contrast, based on size alone, NGF-dependent cells appear to be a single population of only small-diameter neurons. Thus, BDNF and NT-3 may have some new, previously unreported effects on small-diameter afferent neurons. © 1994 John Wiley & Sons, Inc. 1994 John Wiley & Sons, Inc. 相似文献
4.
Diba Borgmann Elisa Ciglieri Nasim Biglari Claus Brandt Anna Lena Cremer Heiko Backes Marc Tittgemeyer F. Thomas Wunderlich Jens C. Brüning Henning Fenselau 《Cell metabolism》2021,33(7):1466-1482.e7
- Download : Download high-res image (202KB)
- Download : Download full-size image
5.
Neurotrophins are important for the development and maintenance of both high and low threshold mechanoreceptors (HTMRs and LTMRs). In this series of studies, the effects of constitutive overexpression of two different neurotrophins, neurotrophin-3 (NT-3) and glial cell line derived neurotrohic factor (GDNF), were examined. Previous studies indicated that both of them may be implicated in the normal development of mouse dorsal root ganglion (DRG) neurons. Neurons from mice transgenically altered to overexpress NT-3 or GDNF (NT-3-OE or GDNF-OE mice) in the skin were examined using several physiological, immunohistochemi-cal and molecular techniques. Ex vivo skin/nerve/DRG/spinal cord and skin/nerve preparations were used to determine the response characteristics of the cutaneous neurons; immunohistochemistry was used to examine the biochemical phenotype of DRG cells and the skin; RT-PCR was used to examine the levels of candidate ion channels in skin and DRG that may correlate with changes in physiologi-cal responses. In GDNF-OE mice, I-isolectin B4 (IB4)-immunopositive C-HTMRs (nociceptors), a large percentage of which are sensitive to GDNF, had significantly lower mechanical thresholds than wildtype (WT) neurons. Heat thresholds for the same cells were not different. Mechanical sensitivity changes in GDNF-OE mice were correlated with significant increases in acid sensing ion channels 2a (ASIC2a) and 2b (ASIC2b) and transient receptor potential channel AI (TRPAI), all of which are putative mechanosensitive ion channels. Overexpression of NT-3 affected the responses of A-LTMRs and A-HTMRs, hut had no effect on C-HTMRs. Slowly adapting type 1 (SA1) LTMRs and A-HTMRs had increased mechanical sensitivity compared to WT. Mechanical sensitivity was correlated with significant increases in acid-sensing ion channels ASIC1 and ASIC3. This data indicates that both neurotrophins play roles in determining mechanical thresholds of cutaneous HTMRs and LTMRs and that sensitivity changes involve the ASIC family of putative mechanoreceptive ion channels. 相似文献
6.
Moore P Ogilvie J Horridge E Mellor IR Clothier RH 《European journal of cell biology》2005,84(5):581-592
The corneal epithelium is a highly innervated tissue and hence in vitro models that mimic the effects of chemicals or radiation (e.g. ultra violet) on this important barrier should include consideration of the potential role of innervation. A sensory neural cell line, ND7/23, was incorporated into a 2D and 3D model of a corneal epithelium, using a human corneal cell line, and effects on barrier integrity were neither adverse nor stimulatory. In the 3D model the nerve cell bodies were separated from the corneal epithelium, via a porous polycarbonate insert membrane. The ND7/23 cells were induced to form neurites and cease division when cultured in the keratinocyte medium employed for the corneal cells. In the absence of calcium, the epithelial barrier function was lost, shown by enhanced fluorescein leakage and relocation of ZO-1 and E-cadherin from the cell membrane. At 60 microM calcium, and above, the corneal cells formed tight junctions, with peripheral membrane location of ZO-1 and E-cadherin. The presence of the ND7/23 cells did not compromise or enhance the time taken to form these junctions, when monitored at 24-h intervals over 72 h. Both male- and female-derived human corneal cell lines showed a similar tight junction functional response to different medium calcium concentrations in the presence or absence of the ND7/23 cells. Once differentiated in keratinocyte medium, patch-clamped ND7/23 cells were capable of producing a whole-cell current when exposed to low pH (5.4), indicative of the presence of active pH-gated ion channels. 相似文献
7.
8.
9.
The Janus transcription factor HapX controls fungal adaptation to both iron starvation and iron excess
下载免费PDF全文

Sarah R Beattie Veronika Klammer Katja Tuppatsch Beatrix E Lechner Nicole Rietzschel Ernst R Werner Aaron A Vogan Dawoon Chung Ulrich Mühlenhoff Masashi Kato Robert A Cramer Axel A Brakhage Hubertus Haas 《The EMBO journal》2014,33(19):2261-2276
10.
11.
12.
13.
14.
Ephrins and semaphorins regulate a wide variety of developmental processes, including axon guidance and cell migration. We have studied the roles of the ephrin EFN-4 and the semaphorin MAB-20 in patterning cell-cell contacts among the cells that give rise to the ray sensory organs of Caenorhabditis elegans. In wild-type, contacts at adherens junctions form only between cells belonging to the same ray. In efn-4 and mab-20 mutants, ectopic contacts form between cells belonging to different rays. Ectopic contacts also occur in mutants in regulatory genes that specify ray morphological identity. We used efn-4 and mab-20 reporters to investigate whether these ray identity genes function through activating expression of efn-4 or mab-20 in ray cells. mab-20 reporter expression in ray cells was unaffected by mutants in the Pax6 homolog mab-18 and the Hox genes egl-5 and mab-5, suggesting that these genes do not regulate mab-20 expression. We find that mab-18 is necessary for activating efn-4 reporter expression, but this activity alone is not sufficient to account for mab-18 function in controlling cell-cell contact formation. In egl-5 mutants, efn-4 reporter expression in certain ray cells was increased, inconsistent with a simple repulsion model for efn-4 action. The evidence indicates that ray identity genes primarily regulate ray morphogenesis by pathways other than through regulation of expression of semaphorin and ephrin. 相似文献
15.
Nunes F Wolf M Hartmann J Paul RJ 《Biochemical and biophysical research communications》2005,338(2):862-871
The functional role of the ABC transporter PGP-2 from the nematode Caenorhabditis elegans has been studied by combining phenotype analyses of pgp-2 deletion mutants or pgp-2 RNAi treated worms with reporter gene studies using a pgp-2::GFP construct. pgp-2 mutants showed a strong reduction of lipid stores. In addition, we found that in the case of the pgp-2 mutant or after pgp-2 RNAi the worms were unable to perform pinocytosis and to acidify intestinal lysosomes. Especially under cholesterol-restricted conditions, the viability of the mutant was reduced. Surprisingly, the chemosensory AWA neurons in the head region were identified as expression sites by reporter gene studies. These neurons are known to be involved in attraction behaviour towards odorants associated with potential food bacteria. Our results imply that PGP-2 is involved in a signalling process that connects sensory inputs to intestinal functions, possibly by influencing acidification of intestinal lysosomes, which in turn may affect pinocytosis and lipid storage. 相似文献
16.
Maya Sieber-Blum Kazuo Ito Michael K. Richardson Carol J. Langtimm R. Scott Duff 《Developmental neurobiology》1993,24(2):173-184
Many early migratory neural crest cells are pluripotent in the sense that their progeny are able to generate more than one differentiated phenotype (Sieber-Blum and Cohen, 1980, Dev. Biol. 80:95–106; Baroffio, Dupin, and Le Douarin, 1988, Proc. Natl. Acad. Sci. USA 85:5325–5329; Bronner-Fraser and Fraser, 1988, Nature 335:161–164; Sieber-Blum, 1989a, Science 243:1608–1611; Ito and Sieber-Blum, 1991, Dev. Biol. 148:95–106). At trunk levels, the neural crest contains two classes (Sieber-Blum and Cohen, 1980) and at posterior rhombencephalic levels, three different classes of pluripotent cells (Ito and Sieber-Blum, 1991). We investigated cell differentiation by in vitro clonal analysis to determine when in development the pool of pluripotent neural crest cells becomes exhausted. The data suggest that different classes of pluripotent cells, precursor cells with more restricted developmental potentials, and apparently committed cells, exist at sites of advanced migration (posterior branchial arches) and even at target sites of neural crest cell differentiation [posterior branchial arches, dorsal root ganglia (DRG), sympathetic ganglia (SG), and epidermal ectoderm]. Some putative classes of pluripotent cells persist well into the second half of embryonic development. These observations have implications for our understanding of the mechanisms that control neural crest cell migration and differentiation. They support the idea that cues originating from the microenvironment affect differentiation of pluripotent neural crest cells. One such signal appears to be brain-derived neurotrophic factor (BDNF). In the presence of BDNF, but not nerve growth factor (NGF), there is a significant increase in the number of neural crest cells per colony that express a sensory neuron-specific marker. Because this increase is not accompanied by a corresponding increase in the total number of cells per colony, this suggests that BDNF plays a role in cell type specification. © 1993 John Wiley & Sons, Inc. 相似文献
17.
18.
19.
Nolz-1/Zfp503, a zinc finger-containing gene, is a mammalian member of the SP1-related nocA/elb/tlp-1 gene family. Previous studies have shown that Nolz-1 homologs are important for patterning the rhombomeres in zebrafish hindbrain. We therefore studied the expression pattern of Nolz-1 in the developing mouse hindbrain. Nolz-1 mRNA expression was detected in the prospective rhombomere 3, 5 and caudal regions as early as E8.75. After E11.5, Nolz-1-positive cells were organized as distinct cell clusters, and they were largely non-overlapped with either Pax2-positive or Phox2b-positive domains. Most interestingly, we found that Nolz-1 was specifically expressed by Phox2b-negative/Isl1/2-positive somatic motor neurons, but not by Phox2b-positive/Isl1/2-positive branchial and visceral motor neurons, suggesting that Nolz-1 may regulate development of somatic motor neurons in the hindbrain. In addition to be expressed in differentiating post-mitotic neurons, Nolz-1 was also expressed by progenitor cells in the ventricular zone located in the dorsal part of aqueduct and the alar plates of hindbrain, which suggests a regulatory role of Nolz-1 in the germinal zone. Taken together, based on its domain- and cell type-selective pattern, Nolz-1 may involve in regulation of various developmental processes, including regional patterning and cell-type specification and differentiation in the developing mouse hindbrain. 相似文献
20.
Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191(+/-) mice are normal and fertile. Homozygous Zfp191(-/-) embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191(-/-) and Zfp191(+/-) embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191(-/-) cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191(+/-) intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation. 相似文献