首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl mutants are separable. Furthermore, lgl mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl tissue shows less apoptosis.  相似文献   

2.
During the initial stages of carcinogenesis, transformation events occur in a single cell within an epithelial monolayer. However, it remains unknown what happens at the interface between normal and transformed epithelial cells during this process. In Drosophila, it has been recently shown that normal and transformed cells compete with each other for survival in an epithelial tissue; however the molecular mechanisms whereby “loser cells” undergo apoptosis are not clearly understood. Lgl (lethal giant larvae) is a tumor suppressor protein and plays a crucial role in oncogenesis in flies and mammals. Here we have examined the involvement of Lgl in cell competition and shown that a novel Lgl-binding protein is involved in Lgl-mediated cell competition. Using biochemical immunoprecipitation methods, we first identified Mahjong as a novel binding partner of Lgl in both flies and mammals. In Drosophila, Mahjong is an essential gene, but zygotic mahjong mutants (mahj −/−) do not have obvious patterning defects during embryonic or larval development. However, mahj −/− cells undergo apoptosis when surrounded by wild-type cells in the wing disc epithelium. Importantly, comparable phenomena also occur in Mahjong-knockdown mammalian cells; Mahjong-knockdown Madin-Darby canine kidney epithelial cells undergo apoptosis, only when surrounded by non-transformed cells. Similarly, apoptosis of lgl −/− cells is induced when they are surrounded by wild-type cells in Drosophila wing discs. Phosphorylation of the c-Jun N-terminal kinase (JNK) is increased in mahj −/− or lgl −/− mutant cells, and expression of Puckered (Puc), an inhibitor of the JNK pathway, suppresses apoptosis of these mutant cells surrounded by wild-type cells, suggesting that the JNK pathway is involved in mahj- or lgl-mediated cell competition. Finally, we have shown that overexpression of Mahj in lgl −/− cells strongly suppresses JNK activation and blocks apoptosis of lgl −/− cells in the wild-type wing disc epithelium. These data indicate that Mahjong interacts with Lgl biochemically and genetically and that Mahjong and Lgl function in the same pathway to regulate cellular competitiveness. As far as we are aware, this is the first report that cell competition can occur in a mammalian cell culture system.  相似文献   

3.
4.
Enhancer of rudimentary, e(r), encodes a small nuclear protein, ER, that has been implicated in the regulation of pyrimidine metabolism, DNA replication and cell proliferation. In Drosophila melanogaster, a new recessive Notch allele, Nnd-p, was isolated as a lethal in combination with an e(r) allele, e(r)p2. Both mutants are viable as single mutants. Nnd-p is caused by a P-element insertion in the 5′ UTR, 378-bp upstream of the start of translation. Together the molecular and genetic data argue that Nnd-p is a hypomorphic allele of N. The three viable notchoid alleles, Nnd-p, Nnd-1 and Nnd-3, are lethal in combination with e(r) alleles. Our present hypothesis is that e(r) is a positive regulator of the Notch signaling pathway and that the lethality of the N e(r) double mutants is caused by a reduction in the expression of the pathway. This is supported by the rescue of the lethality by a mutation in Hairless, a negative regulator of N, and by the synthetic lethality of dx e(r) double mutants. Further support for the hypothesis is a reduction in E(spl) expression in an e(r) mutant. Immunostaining localizes ER to the nucleus, suggesting a nuclear function for ER. A role in the Notch signaling pathway, suggests that e(r) may be expressed in the nervous system. This turns out to be the case, as immunostaining of ER shows that ER is localized to the developing CNS.  相似文献   

5.
Lethal giant larvae (Lgl) plays a critical role in establishment of cell polarity in epithelial cells. While Frizzled/Dsh signaling has been implicated in the regulation of the localization and activity of Lgl, it remains unclear whether specific Wnt ligands are involved. Here we show that Wnt5a triggers the release of Lgl from the cell cortex into the cytoplasm with the concomitant decrease in Lgl stability. The observed changes in Lgl localization were independent of atypical PKC (aPKC), which is known to influence Lgl distribution. In ectodermal cells, both Wnt5a and Lgl triggered morphological and molecular changes characteristic of apical constriction, whereas depletion of their functions prevented endogenous and ectopic bottle cell formation. Furthermore, Lgl RNA partially rescued bottle cell formation in embryos injected with a dominant negative Wnt5a construct. These results suggest a molecular link between Wnt5a and Lgl that is essential for apical constriction during vertebrate gastrulation.  相似文献   

6.
7.
The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.  相似文献   

8.
9.
The role of autophagy in cancer is complex and context-dependent. Here we describe work with genetically engineered mouse models of non-small cell lung cancer (NSCLC) in which the tumor-suppressive and tumor-promoting function of autophagy can be visualized in the same system. We discovered that early tumorigenesis in Braf V600E -driven lung cancer is accelerated by autophagy ablation due to unmitigated oxidative stress, as observed with loss of Nfe2l2/Nrf2-mediated antioxidant defense. However, this growth advantage is eventually overshadowed by progressive mitochondrial dysfunction and metabolic insufficiency, and is associated with increased survival of mice bearing autophagy-deficient tumors. Atg7 deficiency alters progression of Braf V600E-driven tumors from adenomas (Braf V600E ; atg7−/−) and adenocarcinomas (trp53−/−; Braf V600E ; atg7−/−) to benign oncocytomas that accumulated morphologically and functionally defective mitochondria, suggesting that defects in mitochondrial metabolism may compromise continued tumor growth. Analysis of tumor-derived cell lines (TDCLs) revealed that Atg7-deficient cells are significantly more sensitive to starvation than Atg7–wild-type counterparts, and are impaired in their ability to respire, phenotypes that are rescued by the addition of exogenous glutamine. Taken together, these data suggest that Braf V600E -driven tumors become addicted to autophagy as a means to preserve mitochondrial function and glutamine metabolism, and that inhibiting autophagy may be a powerful strategy for Braf V600E -driven malignancies.  相似文献   

10.
11.
During insect oogenesis, the follicular epithelium undergoes both cell proliferation and apoptosis, thus modulating ovarian follicle growth. The Hippo pathway is key in these processes, and has been thoroughly studied in the meroistic ovaries of Drosophila melanogaster. However, nothing is known about the role of the Hippo pathway in primitive panoistic ovaries. This work examines the mRNA expression levels of the main components of the Hippo pathway in the panoistic ovary of the basal insect species Blattella germanica, and demonstrates the function of Hippo through RNAi. In Hippo-depleted specimens, the follicular cells of the basal ovarian follicles proliferate without arresting cytokinesis; the epithelium therefore becomes bilayered, impairing ovarian follicle growth. This phenotype is accompanied by long stalks between the ovarian follicles. In D. melanogaster loss of function of Notch determines that the stalk is not developed. With this in mind, we tested whether Hippo and Notch pathways are related in B. germanica. In Notch (only)-depleted females, no stalks were formed between the ovarian follicles. Simultaneous depletion of Hippo and Notch rescued partially the stalk to wild-type. Unlike in the meroistic ovaries of D. melanogaster, in panoistic ovaries the Hippo pathway appears to regulate follicular cell proliferation by acting as a repressor of Notch, triggering the switch from mitosis to the endocycle in the follicular cells. The phylogenetically basal position of B. germanica suggests that this might be the ancestral function of Hippo in insect ovaries.  相似文献   

12.
13.
14.
CEP161 is a novel component of the Dictyostelium discoideum centrosome which was identified as binding partner of the pericentriolar component CP250. Here we show that the amino acids 1-763 of the 1381 amino acids CEP161 are sufficient for CP250 binding, centrosomal targeting and centrosome association. Analysis of AX2 cells over-expressing truncated and full length CEP161 proteins revealed defects in growth and development. By immunoprecipitation experiments we identified the Hippo related kinase SvkA (Hrk-svk) as binding partner for CEP161. Both proteins colocalize at the centrosome. In in vitro kinase assays the N-terminal domain of CEP161 (residues 1-763) inhibited the kinase activity of Hrk-svk. A comparison of D. discoideum Hippo kinase mutants with mutants overexpressing CEP161 polypeptides revealed similar defects. We propose that the centrosomal component CEP161 is a novel player in the Hippo signaling pathway and affects various cellular properties through this interaction.  相似文献   

15.
TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.  相似文献   

16.
Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2–3 months old) and juvenile (4 weeks old) Git1−/− mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in Git1−/− mice.  相似文献   

17.
18.
In epithelial and stem cells, lethal giant larvae (Lgl) is a potent tumour suppressor, a regulator of Notch signalling, and a mediator of cell fate via asymmetric cell division. Recent evidence suggests that the function of Lgl is conserved in mammalian haematopoietic stem cells and implies a contribution to haematological malignancies. To date, direct measurement of the effect of Lgl expression on malignancies of the haematopoietic lineage has not been tested. In Lgl1−/− mice, we analysed the development of haematopoietic malignancies either alone, or in the presence of common oncogenic lesions. We show that in the absence of Lgl1, production of mature white blood cell lineages and long-term survival of mice are not affected. Additionally, loss of Lgl1 does not alter leukaemia driven by constitutive Notch, c-Myc or Jak2 signalling. These results suggest that the role of Lgl1 in the haematopoietic lineage might be restricted to specific co-operating mutations and a limited number of cellular contexts.  相似文献   

19.
Yu J  Poulton J  Huang YC  Deng WM 《PloS one》2008,3(3):e1761
Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.  相似文献   

20.
Acetylation of α-tubulin on lysine 40 marks long-lived microtubules in structures such as axons and cilia, and yet the physiological role of α-tubulin K40 acetylation is elusive. Although genetic ablation of the α-tubulin K40 acetyltransferase αTat1 in mice did not lead to detectable phenotypes in the developing animals, contact inhibition of proliferation and cell–substrate adhesion were significantly compromised in cultured αTat1−/− fibroblasts. First, αTat1−/− fibroblasts kept proliferating beyond the confluent monolayer stage. Congruently, αTat1−/− cells failed to activate Hippo signaling in response to increased cell density, and the microtubule association of the Hippo regulator Merlin was disrupted. Second, αTat1−/− cells contained very few focal adhesions, and their ability to adhere to growth surfaces was greatly impaired. Whereas the catalytic activity of αTAT1 was dispensable for monolayer formation, it was necessary for cell adhesion and restrained cell proliferation and activation of the Hippo pathway at elevated cell density. Because α-tubulin K40 acetylation is largely eliminated by deletion of αTAT1, we propose that acetylated microtubules regulate contact inhibition of proliferation through the Hippo pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号