首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Size and Composition of Marek''s Disease Virus Deoxyribonucleic Acid   总被引:15,自引:12,他引:3       下载免费PDF全文
Deoxyribonucleic acid (DNA) extracted from purified nucleocapsids of Marek's disease herpesvirus (MDV) was cosedimented with T4 and with herpes simplex virus (HSV) DNA in neutral sucrose density gradients and with T4 DNA in alkaline sucrose density gradients. These experiments indicated that the intact MDV DNA had a sedimentation constant of 56S corresponding to a molecular weight of 1.2 x 10(8) daltons. In the alkaline gradients, the largest and most prominent band contains a DNA sedimenting at 70S corresponding to 6.0 x 10(7) daltons in molecular weight. The DNA is therefore double-stranded and not cross-linked. Isopycnic sedimentation of the MDV DNA molecules with SPO1, Micrococcus lysodeikticus, and HSV DNA gave a density of 1.705 g/cm(3) corresponding to 46 guanine plus cytosine moles per cent. Lastly, in hybridization tests the DNA hybridized with RNA of infected cells but not with that of uninfected cells supporting the conclusion that it is viral.  相似文献   

2.
Hydroxyurea inhibited the replication of bacteriophage T4 in Escherichia coli B. The concentration of hydroxyurea required to inhibit net deoxyribonucleic acid (DNA) synthesis 50% was about 50-fold less than that required in uninfected cells. Even in the presence of high hydroxyurea concentrations, phage DNA was readily synthesized from the products of breakdown of the E. coli DNA, and viable phage were made. Deoxyribonucleotide, but not ribonucleotide, synthesis was strongly inhibited in the presence of hydroxyurea. The data indicate that hydroxyurea specifically inhibits de novo DNA synthesis in E. coli infected with bacteriophage T4 by inhibiting the ribonucleoside diphosphate reductase system, but does not affect DNA synthesis at subsequent steps.  相似文献   

3.
Role of Gene 52 in Bacteriophage T4 DNA Synthesis   总被引:4,自引:3,他引:1       下载免费PDF全文
In an attempt to elucidate the mechanism of delayed DNA synthesis in phage T4, Escherichia coli B cells were infected with H17 (an amber mutant defective in gene 52 possessing a "DNA-delay" phenotype). The fate of (14)C-labeled H17 parental DNA after infection was followed: we could show that this DNA sediments more slowly in neutral sucrose than wild-type DNA 3 min postinfection. In pulse-chase experiments progeny DNA was found to undergo detachment from the membrane at 12 min postinfection. Reattachment to the membrane was found to be related to an increase in rate of DNA synthesis. A nucleolytic activity that is absent from cells infected by wild-type phage and from uninfected cells could be detected in extracts prepared from mutant-infected cells. In contrast, degradation of host DNA was found to be less extensive in am H17 compared with wild-type infected cells. Addition of chloramphenicol to mutant-infected cells 10 min postinfection inhibited the appearance of a nuclease activity on one hand and suppressed the "DNA-delay" phenotype on the other hand. We conclude that the gene 52 product controls the activity of a nuclease in infected cells whose main function may be specific strand nicking in association with DNA replication. This gene product might directly attack both E. coli and phage T4 DNA, or indirectly determine their sensitivity to degradation by another nuclease.  相似文献   

4.
5.
The effect of nalidixic acid on deoxyribonucleic acid (DNA) synthesis in Bacillus subtilis cells infected with bacteriophage SPO1 was studied. Nalidixic acid had little inhibitory effect on SPO1 DNA synthesis at concentrations that drastically inhibited B. subtilis DNA synthesis. Inhibition of DNA synthesis, appropriate to the concentration used, was imposed within 1 min after addition of nalidixic acid, suggesting that it acts directly on DNA synthesis in both infected and uninfected cells. The SPO1 DNA synthesized in the presence of high concentrations of nalidixic acid had a density characteristic of normal SPO1 DNA and was packaged into viable progeny phage particles, but its rate of synthesis was reduced and bacterial lysis was delayed.  相似文献   

6.
The replication of herpes simplex virus (HSV) is unimpeded in KB cells which have been blocked in their capacity to synthesize deoxyribonucleic acid (DNA) by high levels of thymidine (TdR). Studies showed that the presence of excess TdR did not prevent host or viral DNA replication in HSV-infected cells. In fact, more cellular DNA was synthesized in infected TdR-blocked cells than in uninfected TdR-blocked cells. This implies that the event which relieved the TdR block was not specific for viral DNA synthesis but allowed some cellular DNA synthesis to occur. These results suggested that HSV has a means to insure a pool of deoxycytidylate derivatives for DNA replication in the presence of excess TdR. We postulated that a viral-induced ribonucleotide reductase was present in the cell after infection which was not inhibited by thymidine triphosphate (TTP). Accordingly, comparable studies of the ribonucleotide reductase found in infected and uninfected KB cells were made. We established conditions that would permit the study of viral-induced enzymes in logarithmically growing KB cells. A twofold stimulation in reductase activity was observed by 3 hr after HSV-infection. Reductase activity in extracts taken from infected cells was less sensitive to inhibition by exogenous (TTP) than the enzyme activity present in uninfected cells. In fact, the enzyme extracted from infected cells functioned at 60% capacity even in the presence of 2 mm TTP. These results support the idea that a viral-induced ribonucleotide reductase is present after HSV infection of KB cells and that this enzyme is relatively insensitive to inhibition by exogenous TTP.  相似文献   

7.
Is the enzymatic machinery for DNA precursor biosynthesis linked to the DNA replication apparatus? To identify intermolecular associations among deoxyribonucleotide biosynthetic enzymes and to ask whether these enzymes are linked to replication proteins, we analyzed radiolabeled T4 bacteriophage proteins that bind specifically to a column of immobilized T4 deoxycytidylate hydroxymethylase. More than a dozen T4 proteins and a few Escherichia coli proteins are adsorbed specifically by this column. Several of the T4 proteins were identified by two-dimensional gel electrophoresis and radioautography. These include five enzymes involved in DNA precursor biosynthesis, dCMP hydroxymethylase, thymidylate synthase, dihydrofolate reductase, dCTPase-dUTPase, and ribonucleotide reductase large and small subunits, plus several proteins of DNA metabolism and replication. Analysis of extracts of cells infected with phage amber mutants defective in specific proteins suggested a specific association involving thymidylate synthase and the gene 32 single-strand DNA-binding protein.  相似文献   

8.
9.
10.
The product of gene 1.2 of bacteriophage T7 is not required for the growth of T7 in wild-type Escherichia coli since deletion mutants lacking the entire gene 1.2 grow normally (Studier et al., J. Mol. Biol. 135:917-937, 1979). By using a T7 strain lacking gene 1.2, we have isolated a mutant of E. coli that was unable to support the growth of both point and deletion mutants defective in gene 1.2. The mutation, optA1, was located at approximately 3.6 min on the E. coli linkage map in the interval between dapD and tonA; optA1 was 92% cotransducible with dapD. By using the optA1 mutant, we have isolated six gene 1.2 point mutants of T7, all of which mapped between positions 15 and 16 on the T7 genetic map. These mutations have also been characterized by DNA sequence analysis, E. coli optA1 cells infected with T7 gene 1.2 mutants were defective in T7 DNA replication; early RNA and protein synthesis proceeded normally. The defect in T7 DNA replication is manifested by a premature cessation of DNA synthesis and degradation of the newly synthesized DNA. The defect was not observed in E. coli opt+ cells infected with T7 gene 1.2 mutants or in E. coli optA1 cells infected with wild-type T7 phage.  相似文献   

11.
Assays have been described in which duplex adeno-associated virus (AAV) DNA can be replicated in HeLa cell extracts with exogenous AAV Rep protein. These assays appear to mimic the AAV DNA replication that occurs in the cell, including the ability of extracts from adenovirus (Ad)-infected cells to replicate duplex AAV DNA templates more efficiently than extracts from uninfected cells can. We showed previously that the Ad-infected extract was able to support a more processive replication than the uninfected extract. When the Ad single-stranded DNA binding protein (Ad-DBP) was added to an uninfected extract, DNA replication became processive. Based on a strand displacement replication model, we hypothesized that the Ad-DBP was stabilizing the displaced single-stranded DNA during strand displacement replication. In this report, we show that in Ad-infected extracts most of the newly replicated duplex DNA is converted into a single-stranded form shortly after synthesis. Using the results of assays for the replication of single-stranded AAV DNA, we show that these single-stranded molecules serve as templates for additional replication. In addition, we identify a class of molecules which are likely to be intermediates of replication on single-stranded templates. We discuss a possible role for replication of single-stranded molecules in the infected cell.  相似文献   

12.
The metabolism and disposition of 5-propyl-2'-deoxyuridine (Pr-dUrd) in herpes simplex virus type 1 infections were investigated in cell culture using [14C]Pr-dUrd, [32P]orthophosphate, and several methods including high pressure liquid chromatography and isopycnic centrifugation. Results in infected cells indicate Pr-dUrd 1) is taken up and phosphorylated to mono-, di-, and triphosphates; 2) is incorporated into DNA; 3) preferentially inhibits synthesis of viral DNA; 4) blocks re-initiation of viral DNA synthesis even after removal of the nucleoside from the culture; and 5) exerts these effects early in the course of infection (before 6 h postinfection). Pr-dUrd was not phosphorylated in uninfected cells, and had little or no effect on apparent cellular DNA synthesis in infected or uninfected cells. Present evidence suggests one possible antiviral event could be the lethal effect of Pr-dUrd after incorporation into viral DNA by alteration of DNA template-directed functions such as replication.  相似文献   

13.
Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3(+) related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G(2)/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.  相似文献   

14.
15.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

16.
DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.  相似文献   

17.
HU is one of the most abundant DNA binding proteins of bacteria. Unlike IHF, integration host factor of Escherichia coli, with which HU shares many properties, including a strong sequence homology and similar predicted structure, HU seems to bind non-specifically to DNA whereas IHF binds to specific sites. In this work we compare the binding characteristics of HU and IHF to a DNA fragment containing the minimal origin of replication of E. coli (oriC) and we analyse the effect of HU on the binding capacity of IHF to this oriC fragment. We show that HU interacts randomly and non-specifically with oriC as opposed to the specific binding of IHF to this same DNA sequence. In addition, we show that HU can modulate the binding of IHF to its specific oriC site. Depending on the relative concentrations of HU and IHF, HU is able either to activate or to inhibit the binding of IHF to oriC.  相似文献   

18.
19.
DNA replication in Escherichia coli mutants that lack protein HU.   总被引:11,自引:4,他引:7       下载免费PDF全文
T Ogawa  M Wada  Y Kano  F Imamoto    T Okazaki 《Journal of bacteriology》1989,171(10):5672-5679
  相似文献   

20.
The first step of HIV-1 infection is mediated by the binding of envelope glycoproteins (Env) to CD4 and two major coreceptors, CCR5 or CXCR4. The HIV-1 strains that use CCR5 are involved in primo-infection whereas those HIV-1 strains that use CXCR4 play a major role in the demise of CD4+ T lymphocytes and a rapid progression toward AIDS. Notably, binding of X4 Env expressed on cells to CXCR4 triggers apoptosis of uninfected CD4+ T cells. We now have just demonstrated that, independently of HIV-1 replication, transfected or HIV-1-infected cells that express X4 Env induce autophagy and accumulation of Beclin 1 in uninfected CD4+ T lymphocytes via CXCR4. Moreover, autophagy is a prerequisite to Env-induced apoptosis in uninfected bystander T cells, and CD4+ T cells still undergo an Env-mediated cell death with autophagic features when apoptosis is inhibited. To the best of our knowledge, these findings represent the first example of autophagy triggered through binding of virus envelope proteins to a cellular receptor, without viral replication, leading to apoptosis. Here, we proposed hypotheses about the significance of Env-induced Beclin 1 accumulation in CD4+ T cell death and about the role of autophagy in HIV-1 infected cells depending on the coreceptor involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号