首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autotransporters are a superfamily of virulence proteins produced by Gram-negative bacteria. They consist of an N-terminal β-helical domain (“passenger domain”) that is secreted into the extracellular space and a C-terminal β-barrel domain (“β-domain”) that anchors the protein to the outer membrane. Because the periplasm lacks ATP, vectorial folding of the passenger domain in a C-to-N-terminal direction has been proposed to drive the secretion reaction. Consistent with this hypothesis, mutations that disrupt the folding of the C terminus of the passenger domain of the Escherichia coli O157:H7 autotransporter EspP have been shown to cause strong secretion defects. Here, we show that point mutations introduced at specific locations near the middle or N terminus of the EspP β-helix that perturb folding also impair secretion, but to a lesser degree. Surprisingly, we found that even multiple mutations that potentially abolish the stability of several consecutive rungs of the β-helix only moderately reduce secretion efficiency. Although these results provide evidence that the free energy derived from passenger domain folding contributes to secretion efficiency, they also suggest that a significant fraction of the energy required for secretion is derived from another source.  相似文献   

2.

Background

The serine protease autotransporter EspP is a proposed virulence factor of Shiga toxin-producing Escherichia coli (STEC). We recently distinguished four EspP subtypes (EspPα, EspPβ, EspPγ, and EspPδ), which display large differences in transport and proteolytic activities and differ widely concerning their distribution within the STEC population. The mechanisms underlying these functional variations in EspP subtypes are, however, unknown.

Methodology/Principal Findings

The structural basis of proteolytic and autotransport activity was investigated using transposon-based linker scanning mutagenesis, site-directed mutagenesis and structure-function analysis derived from homology modelling of the EspP passenger domain. Transposon mutagenesis of the passenger domain inactivated autotransport when pentapeptide linker insertions occurred in regions essential for overall correct folding or in a loop protruding from the β-helical core. Loss of proteolytic function was limited to mutations in Domain 1 in the N-terminal third of the EspP passenger. Site-directed mutagenesis demonstrated that His127, Asp156 and Ser263 in Domain 1 form the catalytic triad of EspP.

Conclusions/Significance

Our data indicate that in EspP i) the correct formation of the tertiary structure of the passenger domain is essential for efficient autotransport, and ii) an elastase-like serine protease domain in the N-terminal Domain 1 is responsible for the proteolytic phenotype. Lack of stabilizing interactions of Domain 1 with the core structure of the passenger domain ablates proteolytic activity in subtypes EspPβ and EspPδ.  相似文献   

3.
Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.  相似文献   

4.
PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 Å resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase fold and contains the three conserved active-site motifs characterisitic of penicillin-interacting enzymes. Whilst the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the “x” of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between β5 and α11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or β-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.  相似文献   

5.
Autotransporters (ATs) of Gram-negative bacteria contain an N-proximal passenger domain that is transported to the extracellular milieu and a C-terminal β-domain that inserts into the outer membrane (OM) in a β-barrel conformation. This β-domain facilitates translocation of the passenger domain across the OM and has long been considered to be the translocation pore. However, available crystal structures of β-domains show that the β-barrel pore is too narrow for the observed transport of folded elements within the passenger domains. ATs have recently been shown to interact with the β-barrel assembly machinery. These findings questioned a direct involvement of the β-domain in passenger translocation and suggested that it may only target the passenger to the β-barrel assembly machinery pore. To address the function of the β-domain in more detail, we have replaced the β-domain of the Escherichia coli AT hemoglobin protease by β-domains originating from other OM proteins. Furthermore, we have modified the diameter of the β-domain pore. The mutant proteins were analyzed for their capacity to insert into the OM and for surface display of the passenger. Our results show that efficient passenger secretion requires a specific β-domain that not only functions as a targeting device but also is directly involved in the translocation of the passenger to the cell surface.  相似文献   

6.
A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60 °C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis.  相似文献   

7.
In Eukarya and Archaea, translation initiation factor 2 (eIF2/aIF2), which contains three subunits (α, β, and γ), is pivotal for binding of charged initiator tRNA to the small ribosomal subunit. The crystal structure of the full-sized heterotrimeric aIF2 from Sulfolobus solfataricus in the nucleotide-free form has been determined at 2.8-Å resolution. Superposition of four molecules in the asymmetric unit of the crystal and the comparison of the obtained structures with the known structures of the aIF2αγ and aIF2βγ heterodimers revealed high conformational flexibility in the α- and β-subunits. In fact, the full-sized aIF2 consists of a rigid central part, formed by the γ-subunit, domain 3 of the α-subunit, and the N-terminal α-helix of the β-subunit, and two mobile “wings,” formed by domains 1 and 2 of the α-subunit, the central part, and the zinc-binding domain of the β-subunit. High structural flexibility of the wings is probably required for interaction of aIF2 with the small ribosomal subunit. Comparative analysis of all known structures of the γ-subunit alone and within the heterodimers and heterotrimers in nucleotide-bound and nucleotide-free states shows that the conformations of switch 1 and switch 2 do not correlate with the assembly or nucleotide states of the protein.  相似文献   

8.
The enzyme tetrahydrodipicolinate N-succinyltransferase (DapD) is part of the L-lysine biosynthetic pathway. This pathway is crucial for the survival of the pathogen Mycobacterium tuberculosis (Mtb) and, consequently, the enzymes of the pathway are potential drug targets. We report here the crystal structures of Mtb-DapD and of Mtb-DapD in complex with the co-factor succinyl-CoA (SCoA) at 2.15 Å and 1.97 Å resolution, respectively. Each subunit of the trimeric enzyme consists of three domains, of which the second, a left-handed, parallel β-helix (LβH domain), is the common structural motif of enzymes belonging to the hexapeptide repeat superfamily. The trimeric quaternary structure is stabilized by Mg2+ and Na+ located on the 3-fold axis. The binary complex of Mtb-DapD and SCoA reveals the binding mode(s) of the co-factor and a possible covalent reaction intermediate. The N-terminal domain of Mtb-DapD exhibits a unique architecture, including an interior water-filled channel, which allows access to a magnesium ion located at the 3-fold symmetry axis.  相似文献   

9.
Molecular dynamics simulation of Thermus thermophilus (Tt) RNA polymerase (RNAP) in a catalytic conformation demonstrates that the active site dNMP–NTP base pair must be substantially dehydrated to support full active site closing and optimum conditions for phosphodiester bond synthesis. In silico mutant β R428A RNAP, which was designed based on substitutions at the homologous position (Rpb2 R512) of Saccharomyces cerevisiae (Sc) RNAP II, was used as a reference structure to compare to Tt RNAP in simulations. Long range conformational coupling linking a dynamic segment of the bridge α-helix, the extended fork loop, the active site, and the trigger loop–trigger helix is apparent and adversely affected in β R428A RNAP. Furthermore, bridge helix bending is detected in the catalytic structure, indicating that bridge helix dynamics may regulate phosphodiester bond synthesis as well as translocation. An active site “latch” assembly that includes a key trigger helix residue Tt β′ H1242 and highly conserved active site residues β E445 and R557 appears to help regulate active site hydration/dehydration. The potential relevance of these observations in understanding RNAP and DNAP induced fit and fidelity is discussed.  相似文献   

10.
Crystal Structure of a Full-Length Autotransporter   总被引:1,自引:0,他引:1  
The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical interest for protein display on bacterial cell surfaces. Despite their importance, the mechanism by which passenger domains of ATs pass the OM is still unclear. The classical view is that the β-barrel domain provides the conduit through which the unfolded passenger moves, with the energy provided by vectorial folding of the β-strand-rich passenger on the extracellular side of the OM. We present here the first structure of a full-length AT, the esterase EstA from Pseudomonas aeruginosa, at a resolution of 2.5 Å. EstA has a relatively narrow, 12-stranded β-barrel that is covalently attached to the passenger domain via a long, curved helix that occupies the lumen of the β-barrel. The passenger has a structure that is dramatically different from that of other known passengers, with a globular fold that is dominated by α-helices and loops. The arrangement of secondary-structure elements suggests that the passenger can fold sequentially, providing the driving force for passenger translocation. The esterase active-site residues are located at the apical surface of the passenger, at the entrance of a large hydrophobic pocket that contains a bound detergent molecule that likely mimics substrate. The EstA structure provides insight into AT mechanism and will facilitate the design of fusion proteins for cell surface display.  相似文献   

11.
Subunit “a” is associated with the membrane-bound (VO) complex of eukaryotic vacuolar H+-ATPase acidification machinery. It has also been shown recently to be involved in diverse membrane fusion/secretory functions independent of acidification. Here, we report the crystal structure of the N-terminal cytosolic domain from the Meiothermus ruber subunit “I” homolog of subunit a. The structure is composed of a curved long central α-helix bundle capped on both ends by two lobes with similar α/β architecture. Based on the structure, a reasonable model of its eukaryotic subunit a counterpart was obtained. The crystal structure and model fit well into reconstructions from electron microscopy of prokaryotic and eukaryotic vacuolar H+-ATPases, respectively, clarifying their orientations and interactions and revealing features that could enable subunit a to play a role in membrane fusion/secretion.  相似文献   

12.
A Novel Intein-Like Autoproteolytic Mechanism in Autotransporter Proteins   总被引:1,自引:0,他引:1  
Many virulence factors secreted by pathogenic Gram-negative bacteria are found to be members of the autotransporter protein family. These proteins share a common mechanism by which they exit the periplasm, involving the formation of a 12-stranded β-barrel domain in the outer membrane. The role of this barrel in the secretion of the N-terminal passenger domain is controversial, and no model currently explains satisfactorily the entire body of experimental data. After secretion, some autotransporter barrels autoproteolytically cleave away the passenger, and one crystal structure is known for a barrel of this type in the postcleavage state. Hbp is an autotransporter of the self-cleaving type, which cuts the polypeptide between two absolutely conserved asparagine residues buried within the barrel lumen. Mutation of the first asparagine residue to isosteric aspartic acid prevents proteolysis. Here we present the crystal structure of a truncated Hbp mutant carrying the C-terminal residues of the passenger domain attached to the barrel. This model mimics the state of the protein immediately prior to separation of the passenger and barrel domains, and shows the role of residues in the so-called “linker” between the passenger and β domains. This high-resolution membrane protein crystal structure also reveals the sites of many water molecules within the barrel. The cleavage mechanism shows similarities to those of inteins and some viral proteins, but with a novel means of promoting nucleophilic attack.  相似文献   

13.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

14.
Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1–171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180–325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA180–325). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA180–325 with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA1–325) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the periplasmic domain of OmpA above physiological temperatures, which may induce dimerization and play a role in triggering the previously reported larger pore formation.  相似文献   

15.
16.
17.
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosomal segregation and condensation in γ-proteobacteria. MukB and canonical SMC proteins share a characteristic five-domain structure. Globular N- and C-terminal domains interact to form an ATP-binding cassette-like ATPase or “head” domain, which is connected to a smaller dimerization or “hinge” domain by a long, antiparallel coiled coil. In addition to mediating dimerization, this hinge region has been implicated in both conformational flexibility and dynamic protein-DNA interactions. We report here the first crystallographic model of the MukB hinge domain. This model also contains approximately 20% of the coiled-coil domain, including an unusual coiled-coil deviation. These results will facilitate studies to clarify the roles of both the hinge and the coiled-coil domains in MukB function.  相似文献   

18.
In nature, the same biochemical reaction can be catalyzed by enzymes having fundamentally different folds, reaction mechanisms and origins. For example, the third step of the reductive catabolism of pyrimidines, the conversion of N-carbamyl-β-alanine to β-alanine, is catalyzed by two β-alanine synthase (βASase, EC 3.5.1.6) subfamilies. We show that the “prototype” eukaryote βASases, such as those from Drosophila melanogaster and Arabidopsis thaliana, are relatively efficient in the conversion of N-carbamyl-βA compared with a representative of fungal βASases, the yeast Saccharomyces kluyveri βASase, which has a high Km value (71 mM). S. kluyveri βASase is specifically inhibited by dipeptides and tripeptides, and the apparent Ki value of glycyl-glycine is in the same range as the substrate Km. We show that this inhibitor binds to the enzyme active center in a similar way as the substrate. The observed structural similarities and inhibition behavior, as well as the phylogenetic relationship, suggest that the ancestor of the fungal βASase was a protease that had modified its profession and become involved in the metabolism of nucleic acid precursors.  相似文献   

19.
Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system,which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a “piston-like” manner. We report here the 2.0 Å resolution crystal structure of an N-terminally truncated variant of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal α-helix and C-terminal β-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large β-sheet in the variable domain, where GspG contains an α-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved β-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.  相似文献   

20.
Functional modification of protein through N-terminal acetylation is common in eukaryotes but rare in prokaryotes. Prothymosin α is an essential protein in immune stimulation and apoptosis regulation. The protein is N-terminal acetylated in eukaryotes, but similar modification has never been found in recombinant protein produced in prokaryotes. In this study, two mass components of recombinant human prothymosin α expressed in Escherichia coli were identified and separated by RP-HPLC. Mass spectrometry of the two components showed that one of them had a 42 Da mass increment as compared with the theoretical mass of human prothymosin α, which suggested a modification of acetylation. The mass of another one was equal to that of the theoretical one. Peptides mass spectrometry of the modified component showed that the 42-Da mass increment occurred in the N-terminal peptide domain, and MS/MS peptide sequencing of the N-terminal peptide found that the acetylated modification occurred at the N-terminal serine residue. So, part of the recombinant human prothymosin α produced by E. coli was N-terminal acetylated. This finding adds a new clue for the mechanism of acetylated modification in prokaryotes, and also suggested a new method for production of N-terminal modificated prothymosin α and thymosin α1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号