首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

3.
The importance of p53 in carcinogenesis stems from its central role in inducing cell cycle arrest or apoptosis in response to cellular stresses. We have identified a Drosophila homolog of p53 ("Dmp53"). Like mammalian p53, Dmp53 binds specifically to human p53 binding sites, and overexpression of Dmp53 induces apoptosis. Importantly, inhibition of Dmp53 function renders cells resistant to X ray-induced apoptosis, suggesting that Dmp53 is required for the apoptotic response to DNA damage. Unlike mammalian p53, Dmp53 appears unable to induce a G1 cell cycle block when overexpressed, and inhibition of Dmp53 activity does not affect X ray-induced cell cycle arrest. These data reveal an ancestral proapoptotic function for p53 and identify Drosophila as an ideal model system for elucidating the p53 apoptotic pathway(s) induced by DNA damage.  相似文献   

4.
5.
DNA damage and/or hyperproliferative signals activate the wild-type p53 tumor suppressor protein, which induces a G(1) cell cycle arrest or apoptosis. Although the mechanism of p53-mediated cell cycle arrest is fairly well defined, the p53-dependent pathway regulating apoptosis is poorly understood. Here we report the functional characterization of murine ei24 (also known as PIG8), a gene directly regulated by p53, whose overexpression negatively controls cell growth and induces apoptotic cell death. Ectopic ei24 expression markedly inhibits cell colony formation, induces the morphological features of apoptosis, and reduces the number of beta-galactosidase-marked cells, which is efficiently blocked by coexpression of Bcl-X(L). The ei24/PIG8 gene is localized on human chromosome 11q23, a region frequently altered in human cancers. These results suggest that ei24 may play an important role in negative cell growth control by functioning as an apoptotic effector of p53 tumor suppressor activities.  相似文献   

6.
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.  相似文献   

7.
8.
9.
Li HH  Li AG  Sheppard HM  Liu X 《Molecular cell》2004,13(6):867-878
The largest subunit of TFIID, TAF1, possesses an intrinsic protein kinase activity and is important for cell G1 progression and apoptosis. Since p53 functions by inducing cell G1 arrest and apoptosis, we investigated the link between TAF1 and p53. We found that TAF1 induces G1 progression in a p53-dependent manner. TAF1 interacts with and phosphorylates p53 at Thr-55 in vivo. Substitution of Thr-55 with an alanine residue (T55A) stabilizes p53 and impairs the ability of TAF1 to induce G1 progression. Furthermore, both RNAi-mediated TAF1 ablation and apigenin-mediated inhibition of the kinase activity of TAF1 markedly reduced Thr-55 phosphorylation. Thus, phosphorylation and the resultant degradation of p53 provide a mechanism for regulation of the cell cycle by TAF1. Significantly, the Thr-55 phosphorylation was reduced following DNA damage, suggesting that this phosphorylation contributes to the stabilization of p53 in response to DNA damage.  相似文献   

10.
Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.  相似文献   

11.
The p53 tumor suppressor protein can induce both cell cycle arrest and apoptosis in DNA-damaged cells. In human carcinoma cell lines expressing wild-type p53, expression of E7 allowed the continuation of full cell cycle progression following DNA damage, indicating that E7 can overcome both G1 and G2 blocks imposed by p53. E7 does not interfere with the initial steps of the p53 response, however, and E7 expressing cells showed enhanced expression of p21(waf1/cip1) and reductions in cyclin E- and A-associated kinase activities following DNA damage. One function of cyclin-dependent kinases is to phosphorylate pRB and activate E2F, thus allowing entry into DNA synthesis. Although E7 may substitute for this activity during cell division by directly targeting pRB, continued cell cycle progression in E7-expressing cells was associated with phosphorylation of pRB, suggesting that E7 permits the retention of some cyclin-dependent kinase activity. One source of this activity may be the E7-associated kinase, which was not inhibited following DNA damage. Despite allowing cell cycle progression, E7 was unable to protect cells from p53-induced apoptosis, and the elevated apoptotic response seen in these cells correlated with the reduction of cyclin A-associated kinase activity. It is possible that inefficient cyclin A-dependent inactivation of E2F at the end of DNA synthesis contributes to the enhanced apoptosis displayed by E7-expressing cells.  相似文献   

12.
Oncogene overexpression activates p53 by a mechanism posited to involve uncharacterized hyperproliferative signals. We determined whether such signals produce metabolic perturbations that generate DNA damage, a known p53 inducer. Biochemical, cytological, cell cycle, and global gene expression analyses revealed that brief c-Myc activation can induce DNA damage prior to S phase in normal human fibroblasts. Damage correlated with induction of reactive oxygen species (ROS) without induction of apoptosis. Deregulated c-Myc partially disabled the p53-mediated DNA damage response, enabling cells with damaged genomes to enter the cycle, resulting in poor clonogenic survival. An antioxidant reduced ROS, decreased DNA damage and p53 activation, and improved survival. We propose that oncogene activation can induce DNA damage and override damage controls, thereby accelerating tumor progression via genetic instability.  相似文献   

13.
Apoptosis is an evolutionarily conserved ‘suicide’ programme present in all metazoan cells. Despite its highly conserved nature, it is only recently that any of the molecular mechanisms underlying apoptosis have been identified. Several lines of reasoning indicate that apoptosis and cell proliferation coincide to some degree: many oncogenes that promote cell cycle progression also induce apoptosis; damage to the cell cycle or to DNA integrity is a potent trigger of apoptosis; and the key tumour suppressor proteins, p105rb and p53, exert direct effects both on cell viability and on cell cycle progression. There is less evidence, however, to indicate that apoptosis and the cell cycle share common molecular mechanisms. Moreover, the interleukin-1β converting enzyme (ICE) family of cysteine proteases is now known to play a key role in apoptosis but has no discernible role in the cell cycle, arguing that the two processes are discrete.  相似文献   

14.
Hydroxyurea (HU) is a competitive inhibitor of ribonucleotide reductase that is used for the treatment of myeloproliferative disorders. HU inhibits DNA replication and induces apoptosis in a cell type-dependent manner, yet the relevant pathways that mediate apoptosis in response to this agent are not well characterized. In this study, we employed the human myeloid leukemia 1 (ML-1) cell line as a model to investigate the mechanisms of HU-induced apoptosis. Exposure of ML-1 cells to HU caused rapid cell death that was accompanied by hallmark features of apoptosis, including membrane blebbing, phosphatidylserine translocation, and caspase activation. HU-induced apoptosis required new protein synthesis, was induced by HU exposures as short as 15 min, and correlated with the accumulation of p53 and induction of the p53 target gene PUMA. p53 induction in ML-1 cells was ATR dependent and downregulation of p53 through RNAi delayed HU-induced apoptosis. HU did not induce p53 or induce apoptosis in Molt-3 leukemia cells, even though exposure to HU induced a comparable level of DNA damage and robustly activated the ATR pathway. The microtubule inhibitor nocodazole suppressed HU-induced p53 accumulation in ML-1 cells suggesting that a microtubule-dependent event contributes to p53 induction and apoptosis in this cell line. Our findings outline an HU-induced cell death pathway and suggest that activation of the ATR is necessary, but not sufficient, for stabilization of p53 in response to DNA replication stress.  相似文献   

15.
The tumour suppressor p53 prevents tumour formation after DNA damage by halting cell cycle progression to allow DNA repair or by inducing apoptotic cell death. Loss of wild-type p53 function renders cells resistant to DNA damage-induced cell cycle arrest and ultimately leads to genomic instabilities including gene amplifications, translocations and aneuploidy. Some of these chromosomal lesions are based on mechanisms that involve recombinatorial events. Here we report that p53 physically interacts with key factors of homologous recombination: the human RAD51 protein and its prokaryotic homologue RecA. In vitro, wild-type p53 inhibits defined biochemical activities of RecA protein, such as three-way DNA strand exchange and single strand DNA-dependent ATPase activity. In vivo, temperature-sensitive p53 forms complexes with RAD51 only in wild-type but not in mutant conformation. These observations suggest that functional wild-type p53 may select directly the appropriate pathway for DNA repair and control the extent and timing of the production of genetic variation via homologous recombination. Gene amplification an other types of chromosome rearrangements involved in tumour progression might occur not only as result of inappropriate cell proliferation but as a direct consequence of a defect in p53-mediated control of homologous recombination processes due to mutations in the p53 gene.  相似文献   

16.
The tumour suppressor protein p53 is a critical component of cell cycle checkpoint responses. It upregulates the expression of cyclin-dependent kinase inhibitors in response to DNA damage and other cellular perturbations, and promotes apoptosis when DNA repair pathways are overwhelmed. Given the high incidence of p53 mutations in human cancers, it has been extensively studied, though only a small fraction of these investigations have been in non-mammalian systems. For the present study, an anti-rainbow trout p53 polyclonal antibody was generated. A variety of rainbow trout (Oncorhynchus mykiss) tissues and cell lines were examined through western blot analysis of cellular protein extracts, which revealed relatively high p53 levels in brain and gills. To evaluate the checkpoint response of rainbow trout p53, RTbrain-W1 and RTgill-W1 cell lines were exposed to varying concentrations of the DNA damaging agent bleomycin and ribonucleotide reductase inhibitor hydroxyurea. In contrast to mammals, these checkpoint-inducing agents provoked no apparent increase in rainbow trout p53 levels. These results infer the presence of alternate DNA damage checkpoint mechanisms in rainbow trout cells.  相似文献   

17.
Tumor suppressor p53 functions as a "guardian of the genome" to prevent cells from transformation. p53 is constitutively ubiquitinated and degradated in unstressed conditions, thereby suppressing the expression. However, cellular stimuli enable p53 to escape from the negative regulation, and then stably expressed p53 transactivates its target genes to induce cell cycle arrest, DNA repair, or apoptosis. Promoter preference of target genes is determined by modification status of p53. Because p53 has two critical roles in the decision of cell fate, stopping cell cycle to repair damaged DNA or induction of apoptotic cell death in response to DNA damage, elucidation of switching mechanisms on p53 functions is of particular importance. Here we review recent evidence how several post-translational modifications of p53 including methylation, phosphorylation, acetylation, and ubiquitination, affect the functions of p53 in response to cellular stress.  相似文献   

18.
We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号