首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In order to isolate inulinase overproducers of the marine yeast Pichia guilliermondii, strain 1, cells were mutated by using UV light and LiCl2. One mutant (M-30) with enhanced inulinase production was obtained. Response surface methodology (RSM) was used to optimize the medium compositions and cultivation conditions for inulinase production by the mutant in solid-state fermentation. The initial moisture, inoculum, the amount ratio of wheat bran to rice bran, temperature, pH for the maximum inulinase production by the mutant M-30 were found to be 60.5%, 2.5%, 0.42, 30°C and 6.50, respectively. Under the optimized conditions, 455.9 U/grams of dry substrate (gds) of inulinase activity was reached in the solid state fermentation culture of the mutant M-30 whereas the predicted maximum inulinase activity of 459.2 U/gds was derived from RSM regression. Under the same conditions, its parent strain only produced 291.0 U/gds of inulinase activity. This is the highest inulinase activity produced by the yeast strains reported so far.  相似文献   

2.
General patterns of sucrose fermentation by two strains of Zymomonas mobilis, designated Z7 and Z10, were established using sucrose concentrations from 50 to 200 g/liter. Strain Z7 showed a higher invertase activity than Z10. Strain Z10 showed a reduced specific growth rate at high sucrose concentration while Z7 was unaffected. High sucrose hydrolyzing activity in strain Z7 lead to glucose accumulation in the medium at high sucrose concentrations. Ethanol production and fermentation time depend on the rate of catabolism of the products of sucrose hydrolysis, glucose and fructose. The metabolic quotients for sucrose utilization, qs, and ethanol production, qp (g/g·hr), are unsuitable for describing sucrose utilization by Zymomonas mobilis, as the logarithmic phase of growth precedes the phase of highest substrate utilization (g/liter·hr) and ethanol production (g/liter·hr) in batch culture.  相似文献   

3.

Background  

In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring) form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate q xylose (g xylose/g dry cell weight/h) of 0.08. The study presented herein was performed with the aim of analysing (external) factors that limit q xylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose.  相似文献   

4.
The process parameters were optimized to obtain enhanced enzyme activity from the fungus Phoma herbarum isolate KU4 using rice straw and saw dust as substrate under solid-state fermentation using Response surface methodology (RSM). Genetic algorithm was used to validate the RSM for maximum laccase production. Six variables, viz., pH of the media, initial moisture content, copper sulphate concentration, concentration of tannic acid, inoculum concentration and incubation time were found to be effective and optimized for enhanced production. Maximum laccase production was achieved by RSM at pH 5·0 and 86% of initial moisture content of the culture medium, 150 µmol l−1 of CuSO4, 1·5% tannic acid and 0·128 g inoculum g−1 dry substrate inoculum size on the fourth day of fermentation. The highest laccase activity was observed as 79 008 U g−1, which is approximately sixfold enhanced production compared to the unoptimized condition (12 085·26 U g−1).  相似文献   

5.
Citric acid production from sugar cane molasses byAspergillus niger NIAB 280 was studied in a batch cultivation process. A maximum of 90 g/L total sugar was utilized in citric acid production medium. From the parental strainA. niger, mutant strains showing resistance to 2-deoxyglucose in Vogal's medium containing molasses as a carbon source were induced by γ-irradiation. Among the new series of mutant strains, strain RP7 produced 120 g/L while the parental strain produced 80 g/L citric acid (1.5-fold improvement) from 150 g/L of molasses sugars. The period of citric acid production was shortened from 10 d for the wild-type strain to 6–7 d for the mutant strain. The efficiency of substrate uptake rate with respect to total volume substrate consumption rate,Q s (g per L per h) and specific substrate consumption rate,q s (g substrate per g cells per h) revealed that the mutant grew faster than its parent. This indicated that the selected mutant is insensitive to catabolite repression by higher concentrations of sugars for citric acid production. With respect to the product yield coefficient (Y p/x), volume productivity (Q p) and specific product yields (q p), the mutant strain is significantly (p≤0.05) improved over the parental strain.  相似文献   

6.
A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R 2) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l−1 in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l−1 after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55°C.  相似文献   

7.
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712T were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37°C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h−1) and the highest specific inulinase activity (1.65 U mg−1 dry cell weight) among all strains investigated, when grown at 37°C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose−1) was achieved by K. marxianus CBS 712T at 37°C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.  相似文献   

8.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

9.
A mathematical model with a consideration of energy spilling is developed to describe the activated sludge in the presence of different levels of metabolic uncouplers. The consumption of substrate and oxygen via energy spilling process is modeled with a Monod term, which is dependent on substrate and inhibitor. The sensitivity of the developed model is analyzed. Three parameters, maximum specific growth rate (μ max), energy spilling coefficient (q max), and sludge yield coefficient (Y H) are estimated with experimental data of different studies. The values of μ max, q max, and Y H are found to be 6.72 day-1, 5.52 day-1, and 0.60 mg COD mg-1 COD for 2, 4-dinitrophenol and 7.20 day-1, 1.58 day-1, and 0.62 mg COD mg-1 COD for 2, 4-dichlorophenol. Substrate degradation and sludge yield could be predicted with this model. The activated sludge process in the presence of uncouplers that is described more reasonably by the new model with a consideration of energy spilling. The effects of uncouplers on substrate consumption inhibition and excess sludge reduction in activated sludge are quantified with this model.  相似文献   

10.
The production of β-mannanase from palm kernel cake (PKC) as a substrate in solid substrate fermentation (SSF) was studied using a laboratory column bioreactor. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and airflow rate, on β-mannanase production were evaluated by response surface methodology (RSM) on the basis of a central composite face-centered (CCF) design. Eighteen trials were conducted in which Aspergillus niger FTCC 5003 was cultivated on PKC in an aerated column bioreactor for seven days under SSF process. The highest level of β-mannanase (2117.89 U/g) was obtained when SSF process was performed at incubation temperature, initial moisture level and aeration rate of 32.5°C, 60% and 0.5 l/min, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had significant effects on the production of β-mannanase (P < 0.01). A similar analysis also demonstrated that the linear effect of initial moisture level and an interaction effect between the initial moisture content and aeration rate significantly influenced the production of β-mannanase (P < 0.01). The statistical model suggested that the optimal conditions for attaining the highest level of β-mannanase were incubation temperature of 32°C, initial moisture level of 59% and aeration rate of 0.5 l/min. A β-mannanase yield of 2231.26 U/g was obtained when SSF process was carried out under the optimal conditions described above.  相似文献   

11.
A series of continuous cultures was performed to understand the product formation kinetics of recombinant human interferon gamma (rhIFN-γ) in Escherichia coli at different dilution rates ranging from 0.1 to 0.3 h−1 in different media. A T7 promoter-based vector was used for expression of IFN-γ in E. coli BL21 (DE3) cells. The recombinant protein was produced as inclusion bodies, thus allowing a rapid buildup of rhIFN-γ inside the cell, with the specific product yield (Y p/X ) reaching a maximum value of 182 mg g−1 dry cell weight (DCW). In all the media tested, the specific product formation rate (q p ) was found to be strongly correlated with the specific growth rate (μ), demonstrating the growth-associated nature of product formation. The q p values show no significant decline with time postinduction, even though the recombinant protein has been over produced inside the cell. The maximum q p level of 75.5 mg g−1 h−1 was achieved at the first hour of induction at the dilution rate of 0.3 h−1. Also, this correlation between q p and μ was not critically dependent on media composition, which would made it possible to grow cells in defined media in the growth phase and then push up the specific growth rate just before induction by pulse addition of glucose and yeast extract. This would ensure the twin objectives of high biomass and high specific productivities, leading to high volumetric product concentration.  相似文献   

12.

The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L−1 to 66.9 mg L−1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L−1 and 18.9 mg LAS L−1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L−1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.

  相似文献   

13.
Comparative investigations on the substrate utilization of Nocardia amarae and Rhodococcus spp. (R. rhodochrous and R. erythropolis) were carried out using various fatty acids and paraffinic hydrocarbons. Upon calculation and comparison of their specific growth rates (μ) during the logarithmic phase, it was shown that the lower fatty acids (C2–C5) were utilized preferably and the highest μ value was obtained in octadecane (C18) for all three strains. The initial total organic carbon (TOC) concentration affecting the growth of the 3 strains was investigated, using octadecane as the carbon source. From a comparison of the kinetic parameters of the 3 strains with those obtained in the past studies, it was found that Rhodococcus spp. had higher growth rate and lower affinity for octadecane than N. amarae.  相似文献   

14.
A model that predicts cell growth, lipid accumulation and substrate consumption of oleaginous fungi in chemostat cultures (Meeuwse et al. in Bioproc Biosyst Eng. doi:, 2011) was validated using 12 published data sets for chemostat cultures of oleaginous yeasts and one published data set for a poly-hydroxyalkanoate accumulating bacterial species. The model could describe all data sets well with only minor modifications that do not affect the key assumptions, i.e. (1) oleaginous yeasts and fungi give the highest priority to C-source utilization for maintenance, second priority to growth and third priority to lipid accumulation, and (2) oleaginous yeasts and fungi have a growth rate independent maximum specific lipid production rate. The analysis of all data showed that the maximum specific lipid production rate is in most cases very close to the specific production rate of membrane and other functional lipids for cells growing at their maximum specific growth rate. The limiting factor suggested by Ykema et al. (in Biotechnol Bioeng 34:1268–1276, 1989), i.e. the maximum glucose uptake rate, did not give good predictions of the maximum lipid production rate.  相似文献   

15.

Βackground  

The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains.  相似文献   

16.
Growth and lignocellulolytic enzymes production by two Morchella esculenta strains (BAFC 1728 and BEL 124) growing in solid state fermentation using different lignocellulosic materials along 58 days was characterized. Both strains were able to grow on the three substrates: wheat bran, wheat bran plus corn starch, and rolled oat. The growth was characterized by measuring chitin content, reducing sugars, pH, dry weight loss, and extractable proteins, such parameters varied substantially with substrate and strain used. The maximum rate of growth in both strains was observed between 5 and 28 days. Regarding enzyme production, as a general trend strain BAFC 1728 produced the highest titres. The most evident difference was observed in laccase production by this strain on wheat bran, which exceeded that observed in strain BEL 124 by tenfold (7.45 U g−1).  相似文献   

17.
《Process Biochemistry》2014,49(3):437-444
Lipase from Candida rugosa was immobilized on a polyvinylidene fluoride membrane for synthesis of rose flavor ester, 2-phenylethyl acetate. Response surface methodology (RSM) was employed for kinetic modeling of process and prediction the yield. The RSM was used in practice for determining the kinetic models by fitting the initial rate dates based on the equations of ping-pong bi–bi and order bi–bi model. The maximum reaction rate and kinetic constants were matched with the order bi–bi model. The specificity constant of the immobilized lipase was 10-folds higher than the free form indicated the enzyme–substrate affinity, and catalytic ability was enhanced after immobilization. Moreover, the effects of reaction parameters on the yield were evaluated by RSM using a Box–Behnken experimental design. Based on a ridge max analysis, the maximum conversion was 95.33 ± 2.57% at 38.78 h, 35.85 °C, and substrate mole ratio of 3.65:1. Furthermore, the order bi–bi kinetic model was simulated successfully in a batch reaction. A good prediction existed between the RSM results and integrated equation was found.  相似文献   

18.
Batch fermentative production of welan gum by Alcaligenes sp. CGMCC2428 was investigated under various oxygen supply conditions using regulating agitation speed. Based on a three kinetic parameters analysis that includes specific cell growth rate (μ), specific glucose consumption rate (q s), and specific welan formation rate (q p), a two-stage agitation speed control strategy was proposed to achieve high concentration, high yield, and high viscosity of welan. During the first 22 h, the agitation speed in 7.5 L fermenter was controlled at 800 rpm to maintain high μ for cell growth. The agitation was then reduced step-wise to 600 rpm to maintain a changing profile with stable dissolved oxygen levels and obtain high qp for high welan accumulation. Finally, the maximum concentration of welan was reached at 26.3 ± 0.89 g L−1 with a yield of 0.53 ± 0.003 g g−1 and the welan gum viscosity of 3.05 ± 0.10 Pa s, which increased by an average of 15.4, 15.2, and 20.1% over the best results controlled by constant agitation speeds.  相似文献   

19.
Singh SS  Dikshit AK 《Biodegradation》2011,22(6):1109-1117
Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k L a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking–Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k L a) was 0.4957 min−1 and the maximum specific growth rate of fungus was 0.224 h−1. The values of yield coefficient (Y x/s) and maintenance coefficient (m s) were found to be 0.48 g cells (g substrate)−1 and 0.015 g substrate (g cells)−1 h−1.  相似文献   

20.
Three bacterial (Pedobacter heparinus, Pedobacter piscium, Pedobacter cryoconitis) and three yeast strains (Saccharomyces cerevisiae, Leucosporidiella creatinivora, Rhodotorula glacialis) of different thermal classes (mesophiles and psychrophiles) were tested for the effect of temperature on a range of growth parameters, including optical density, viable cell numbers, and cell dry mass, in order to determine the temperature conditions under which maximum biomass formation is obtained. Maximum values of growth parameters obtained at the stationary growth phase of the strains were used for statistical calculation. Temperature had a significant (≤ 0.05) effect on all growth parameters for each strain; correlations between the growth parameters were significant (≤ 0.05–0.01). The maximum growth temperature or the temperature at which microbial growth was fastest was in no case the temperature at which the investigated strains produced the highest amount of biomass. All tested psychrophilic bacteria and yeast strains produced highest amounts of cells (as calculated per mg cell dry mass or per OD600 unit) at 1°C, while cell numbers of mesophiles were highest at 20°C. Thus, cultivation temperatures close to the maximum growth temperature are not appropriate for studying psychrophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号