首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eight lignocellulosic by-products were evaluated as substrates for cultivation of the oyster mushroom, Pleurotus ostreatus (Jacq. ex. fr) Kummer. The yields of mushroom on the different substrates were 183.1, 151.8, 111.5, 87.8, 49.5, 23.3, 13.0 and 0.0 g for composted sawdust of Triplochiton scleroxylon, rice straw, banana leaves, maize stover, corn husk, rice husk, fresh sawdust, and elephant grass, respectively. The biological efficiency (BE) followed the same pattern and ranged from 61.0% for composted sawdust to 0.0% for elephant grass. The yield of mushroom was positively correlated to cellulose (r 2 =0.6), lignin (r 2 =0.7) and fibre (r 2 =0.7) contents of the substrates. Based on the yield and BE of the substrates tested, rice straw appeared to be the best alternate substrate for growing oyster mushrooms. Electronic Publication  相似文献   

2.
The production of cellulolytic enzymes by Aspergillus niger on lignocellulosic substrates groundnut fodder, wheat bran, rice bran and sawdust in solid state fermentation in a laboratory scale was compared. Czapek Dox liquid broth amended with cellulose (0.5%) was used to moisten lignocellulosic solid supports for cultivation of Aspergillus niger. The production of filter paperase, carboxymethyl cellulase and -glucosidase were monitored at daily intervals for 5 days. The peak production of the enzymes occurred within 3 days of incubation. Among solid supports used in the study, wheat bran was the best solid matrix followed by groundnut fodder in production of cellulolytic enzymes in solid state fermentation. Groundnut fodder supported significant production of FPase (2.09 FPU/g), CMCase (1.36 U/g) and -glucosidase activity (0.0117 U/g) in solid state fermentation. Considerable secretion of protein (5.10 mg/g) on groundnut fodder at peak time interval 1st day of incubation was recorded.  相似文献   

3.
Cultivation of specialty mushrooms on lignocellulosic wastes represents one of the most economical organic recycling processes. Compared with other cultivated mushrooms, very little is known about the nature of the lignocellulolytic enzymes produced by the edible and medicinal fungus Grifola frondosa, the parameters affecting their production, and enzyme activity profiles during different stages of the developmental cycle. In this work we investigated the enzymes that enable G. frondosa, to colonize and deconstruct two formulations based on industrial lignocellulosic by-products. G. frondosa degraded both substrates (oak-sawdust plus corn bran, and oak/corn bran supplemented with coffee spent-ground) decreasing 67 and 50% of their lignin content, along with 44 and 37% of the polysaccharides (hemicellulose and cellulose) respectively. 35.3% biological efficiency was obtained when using oak sawdust plus corn bran as substrate. Coffee spent-ground addition inhibited mushroom production, decreased growth, xylanase and cellulase activities. However, taking into account that G. frondosa successfully colonized this residue; this substrate formula might be considered for its growth and medicinal polysaccharide production. Although G. frondosa tested positive for Azure B plate degradation, a qualitative assay for lignin-peroxidase, attempts to detect this activity during solid state fermentation were unsuccessful. Enzyme activities peaked during colonization but declined drastically during fruiting body formation. Highest activities achieved were: endoglucanase 12.3, exoglucanase 16.2, β-glucosidase 2.3, endoxylanase 20.3, amylase 0.26, laccase 14.8 and Mn-peroxidase 7.4 U/g dry substrate.  相似文献   

4.
Opuntia ficus-indica Mill. (forage cactus) is farmed with relative success in the semi-arid region of the Brazilian northeast for commercial purposes, particularly as forage and food. Endophytic microorganisms are those that can be isolated inside plant tissues and can be a new source to production of enzymes with different potentialities. The objective of this study was to describe the richness of endophytic fungi from O. ficus-indica and to detect the capacity of these species to produce extracellular hydrolytic enzymes. Forty-four endophytic fungi species were isolated. Among them, the most commonly found were Cladosporium cladosporioides (20.43%) and C. sphaerospermum (15.99%). Acremonium terricola, Monodictys castaneae, Penicillium glandicola, Phoma tropica and Tetraploa aristata are being reported for the first time as endophytic fungi for Brazil. The majority of isolated fungi exhibited enzymatic potential. Aspergillus japonicus and P. glandicola presented pectinolytic activity. Xylaria sp. was the most important among the other 14 species with positive cellulase activity. All 24 isolates analysed were xylanase-positive. Protease was best produced by isolate PF103. The results indicate that there is a significant richness of endophytic fungi in O. ficus-indica, and that these isolates indicate promising potential for deployment in biotechnological processes involving production of pectinases, cellulases, xylanases and proteases.  相似文献   

5.
The diversity of cellulases and xylanases secreted by Cellulomonas flavigena cultured on sugar cane bagasse, Solka-floc, xylan, or glucose was explored by two-dimensional gel electrophoresis. C. flavigena produced the largest variety of cellulases and xylanases on sugar cane bagasse. Multiple extracellular proteins were expressed with these growth substrates, and a limited set of them coincided in all substrates. Thirteen proteins with carboxymethyl cellulase or xylanase activity were liquid chromatography/mass spectrometry sequenced. Proteins SP4 and SP18 were identified as products of celA and celB genes, respectively, while SP20 and SP33 were isoforms of the bifunctional cellulase/xylanase Cxo recently sequenced and characterized in C. flavigena. The rest of the detected proteins were unknown enzymes with either carboxymethyl cellulase or xylanase activities. All proteins aligned with glycosyl hydrolases listed in National Center for Biotechnology Information database, mainly with cellulase and xylanase enzymes. One of these unknown enzymes, protein SP6, was cross-induced by sugar cane bagasse, Solka-floc, and xylan. The differences in the expression maps of the presently induced cultures revealed that C. flavigena produces and secretes multiple enzymes to use a wide range of lignocellulosic substrates as carbon sources. The expression of these proteins depends on the nature of the cellulosic substrate.  相似文献   

6.
Lignin degradation by white-rot fungi has received considerable attention as a means for reducing accumulation of lignocellulosic wastes in the environment. The stimulatory effect of surfactants on fungal lignocellulose bioconversion also has attracted wide interest. In this study the influence of dirhamnolipid biosurfactant on biodegradation of rice straw by Phanerochaete chrysosporium was investigated. It was shown that the biodelignification process of rice straw can be significantly enhanced by the presence of dirhamnolipid biosurfactant. In particular, the dirhamnolipid at the concentration of 0.007% increased the peak activity of lignin peroxidase (LiP) by 86% without affecting the manganese peroxidase (MnP) activity. The water-soluble organic carbon (WSOC) contents in the straw substrates as well as the microbial growth and activity were effectively improved by dirhamnolipid, while the degradation rate of lignin increased by 54% with dirhamnolipid of 0.007%. Observed chemical structural and morphological changes showed that the straw substrates were delignified in the presence of dirhamnolipid with the formation of terrace-like fragments separated from the inner cellular fibers and the release of simple compounds. Variation partitioning analysis revealed that the dirhamnolipid addition induced a significant straw biodelignification which explained 22.1% (P = 0.013) of the variance.  相似文献   

7.
Pleurotus species are found to be among the most efficient lignocellulolytic types of white-rot fungi. Rice is the main grain cultivated in the extreme south of Brazil. Defatted rice bran and straw are by-products of low aggregate value. Soft rush (Juncus effusus) is a common native plant also very abundant in the region. In the present work, we evaluated changes in substrate composition after growth of two white-rot fungal species: Pleurotus ostreatus and Pleurotus sajor-caju, aiming to increase protein content and digestibility from substrates through solid fermentations and obtain edible mushrooms of high aggregate value. For that, defatted rice bran, defatted rice straw and soft rush were utilized as substrate. The influence of the variables thermal treatment temperature of substrate, substrate moisture and concentration were evaluated on the protein content, digestibility and biological efficiency. The highest protein enrichment of rice bran in P. sajor-caju-fermented medium was due the fact that there was no fructification in these media, while for the P. ostreatus-fermented medium, part of the synthesized protein was converted into mushrooms. The highest protein enrichments were verified in medium with 80% moisture and 25% soft rush (47.1% using P. ostreatus and 49.0% using P. sajor-caju). A higher digestible protein increase was obtained for both species in media with 70% moisture and 25% soft rush.  相似文献   

8.
Saratale GD  Oh SE 《Biodegradation》2011,22(5):905-919
A novel cellulolytic bacterium was isolated from the forest soil of KNU University campus. Through 16S rRNA sequence matching and morphological observation it was identified as Nocardiopsis sp. KNU. This strain can utilize a broad range of cellulosic substrates including: carboxymethyl cellulose (CMC), avicel, xylan, cellobiose, filter paper and rice straw by producing a large amount of thermoalkalotolerant endoglucanase, exoglucanase, xylanase and glucoamylase. Optimal culture conditions (Dubos medium, 37°C, pH 6.5 and static condition) for the maximal production of the cellulolytic enzymes were determined. The activity of cellulolytic and hemicelluloytic enzymes produced by this strain was mainly present extracellularly and the enzyme production was dependent on the cellulosic substrates used for the growth. Effect of physicochemical conditions and metal additives on the cellulolytic enzymes production were systematically investigated. The cellulases produced by Nocardiopsis sp. KNU have an optimal temperature of 40°C and pH of 5.0. These cellulases also have high thermotolerance as evidenced by retaining 55–70% activity at 80°C and pH of 5.0 and alkalotolerance by retaining >55% of the activity at pH 10 and 40°C after 1 h. The efficiency of fermentative conversion of the hydrolyzed rice straw by Saccharomyces cerevisiae (KCTC-7296) resulted in 64% of theoretical ethanol yield.  相似文献   

9.
Rice husk is one of the most abundant types of lignocellulosic biomass. Because of its significant amount of sugars, such as cellulose and hemicellulose, it can be used for the production of biofuels such as bioethanol. However, the complex structure of lignocellulosic biomass, consisting of cellulose, hemicellulose and lignin, is resistant to degradation, which limits biomass utilization for ethanol production. The protection of cellulose by lignin contributes to the recalcitrance of lignocelluloses to hydrolysis. Therefore, we conducted steam-explosion treatment as pretreatment of rice husk. However, recombinant Escherichia coli KO11 did not ferment the reducing sugar solution obtained by enzymatic saccharification of steam-exploded rice husk. When the steam-exploded rice husk was washed with hot water to remove inhibitory substances and M9 medium (without glucose) was used as a fermentation medium, E. coli KO11 completely fermented the reducing sugar solution obtained by enzymatic saccharification of hot water washing-treated steam-exploded rice husk to ethanol. We report here the efficient production of bioethanol using steam-exploded rice husk.  相似文献   

10.
Polyporus tenuiculus is a naturally occurring species from Central and South America that is consumed by different ethnic groups in the region. To determine the optimal conditions for fruiting body production, two strains were assayed on wheat straw and sawdust with or without supplements. Sixty days of incubation at 25°C were needed to produce a solid block. The highest yield was obtained with strain ICFC 383/00 grown on supplemented willow sawdust. In a second experiment the strain ICFC 383/00 and different supplements were used to improve the biological efficiency (BE) and to determine the quality traits and its biodegradation capacity. The highest yields were obtained on sawdust with 25% of supplements reaching 82.7% of BE. Supplements raised the number of flushes, generally from four to five, contributing to increased yields. The type of substrate had a significant effect on fruiting body diameters of P. tenuiculus, and the largest mushrooms were harvested on supplemented substrate with the highest BE coinciding with the highest dry matter loss in substrates. P. tenuiculus showed a capacity to degrade sawdust, causing a decrease of 67.2–74.5% in cellulose, 80.4–85.7% in hemicellulose, and 60.6–66.2% in lignin content at the end of the cultivation cycle. The decrease in hemicellulose was relatively greater than that of cellulose and lignin on supplemented substrates. This is the first report of the cultivation of P. tenuiculus on lignocellulosic waste, and it is a promising species both for commercial production and for its potential use in the degradation of other biowastes.  相似文献   

11.
In this work, capability of Fusarium solani F-552 of producing lignocellulose-degrading enzymes in submerged fermentation was investigated. The enzyme cocktail includes hydrolases (cellulases, xylanases, and proteinases) as well as ligninolytic enzymes: manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac). To our knowledge, this is the first report on production of MnP, LiP, and Lac together by one F. solani strain. The enzyme productions were significantly influenced by application of either lignocellulosic material or chemical inducers into the fermentation medium. Among them, corn bran significantly enhanced especially productions of cellulases and xylanases (248 and 170 U/mL, respectively) as compared to control culture (11.7 and 29.2 U/mL, respectively). High MnP activity (9.43 U/mL, control 0.45 U/mL) was observed when (+)-catechin was applied into the medium, the yield of LiP was maximal (33.06 U/mL, control 2.69 U/mL) in gallic acid, and Lac was efficiently induced by, 2,2′-azino-bis-[3-ethyltiazoline-6-sulfonate] (6.74 U/mL, not detected in control). Finally, in order to maximize the ligninolytic enzymes yields, a novel strategy of introduction of mild oxidative stress conditions caused by hydrogen peroxide into the fermentation broth was tested. Hydrogen peroxide significantly increased activities of MnP, LiP, and Lac which may indicate that these enzymes could be partially involved in stress response against H2O2. The concentration of H2O2 and the time of the stress application were optimized; hence, when 10 mmol/L H2O2 was applied at the second and sixth day of cultivation, the MnP, LiP, and Lac yields reached 21.67, 77.42, and 12.04 U/mL, respectively.  相似文献   

12.
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 °C at 70–80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 °C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.  相似文献   

13.
Microorganisms that colonize plants require a number of hydrolytic enzymes to help degrade the cell wall. The maize endophyte Acremonium zeae was surveyed for production of extracellular enzymes that hydrolyze cellulose and hemicellulose. The most prominent enzyme activity in cell-free culture medium from A. zeae NRRL 6415 was xylanase, with a specific activity of 60 U/mg from cultures grown on crude corn fiber. Zymogram analysis following SDS-PAGE indicated six functional xylanase polypeptides of the following masses: 51, 44, 34, 29, 23, and 20 kDa. Xylosidase (0.39 U/mg), arabinofuranosidase (1.2 U/mg), endoglucanase (2.3 U/mg), cellobiohydrolase (1.3 U/mg), and β-glucosidase (0.85 U/mg) activities were also detected. Although apparently possessing a full complement of hemicellulolytic activities, cell-free culture supernatants prepared from A. zeae required an exogenously added xylosidase to release more than 90% of the xylose and 80% of the arabinose from corn cob and wheat arabinoxylans. The hydrolytic enzymes from A. zeae may be suitable for application in the bioconversion of lignocellulosic biomass into fermentable sugars. Mention of a trade name or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

14.
Hitherto, little effort has been directed to improve culture conditions for commercial development of maitake (Grifola frondosa), an edible and medicinal fungus, due to the short history of cultivation, particularly in tropical weathers. The purpose of this research was analyzing the environmental factors required for successful basidiome development on synthetic substrates in Colombia. We evaluated different cereal grains (corn, barley, sorghum and rice) for spawn production; and industrial by-products (such as coffee spent-ground and oak-sawdust) as substrates for mushroom production. Exploiting these residues for G. frondosa solid culturing would primarily provide edible mushroom and simultaneously help in resolving their disposal problem. The use of corn grains as substrate for spawn production results an important factor for reducing crop cycle time. A cold shock to 10°C was requisite for basidiome formation. Coffee spent-ground was a good substrate for mycelial growth, but not for mushroom production. When using oak sawdust plus corn bran as substrate, we obtained consistent yields with combined high biological efficiency (BE) (35.3%), best quality mushrooms, and a crop cycle of 12–14 weeks. The results achieved in this investigation contribute to expand the knowledge on this fungus, and compare favorably with previous works in the northern hemisphere with respect to BE, mushroom quality and crop cycle time.  相似文献   

15.
Solid-state fermentation conditions for cellulases production by a newly isolated Penicillium chrysogenum QML-2 were investigated using statistical methods. At first, significant variables for cellulases production including (NH4)2SO4, initial pH and inoculum size were screened by using Plackett-Burman Design. Then the optimal regions of the significant variables were investigated by using the method of steepest ascent. Finally, central composite design and response surface analysis were adopted to determine the optimal values of the significant variables and investigate the combined effects of each variable’s pair on cellulases production. The results showed that the optimal ranges of (NH4)2SO4 concentration, initial pH and inoculum size for three types of cellulases activities were 1.97–2.15 g, pH 4.32–4.41 and 13.3–13.7% (v/w), respectively. Using the mixture of corn stover powder and wheat bran (CSP/WB, 1/1) as carbon source, the optimization resulted in 370.15, 101.76 and 321.56 U/g for maximal endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. Compared with maximum values of cellulases activities (endoglucanase activity 85.21 U/g, filter paper activity 16.62 U/g and β-glucosidase activity 67.68 U/g) obtained under unoptimized conditions, the optimization resulted in 3.34, 5.12 and 3.75 folds improvement for endoglucanase activity, filter paper activity and β-glucosidase activity, respectively. For chitosan hydrolysis, the crude cellulases had the optimal temperature of 55°C, pH of 4.4 and exhibited Michaelis constant (K m) value of 8.34 mg/ml and maximum velocity (V max) of 2.21 μmol glucosamine/min by 1 ml of the crude cellulases.  相似文献   

16.
Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the l-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more l-glutamate and l-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM l-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM l-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.  相似文献   

17.
Corynebacterium glutamicum, the industrial microbe traditionally used for the production of amino acids, proved its value for the fermentative production of diverse products through genetic/metabolic engineering. A successful demonstration of the heterologous expression of arabinose and xylose utilization genes made them interesting biocatalysts for pentose fermentation, which are the main components in lignocellulosic hydrolysates. Its ability to withstand substantial amount of general growth inhibitors like furfurals, hydroxyl methyl furfurals and organic acids generated from the acid/alkali hydrolysis of lignocellulosics in growth arrested conditions and its ability to produce amino acids like glutamate and lysine in acid hydrolysates of rice straw and wheat bran, indicate the future prospective of this bacterium as a potent biocatalyst in fermentation biotechnology. However, the efforts so far on these lines have not yet been reviewed, and hence an attempt is made to look into the efficacy and prospects of C. glutamicum to utilize the normally non-fermentable pentose sugars from lignocellulosic biomass for the production of commodity chemicals.  相似文献   

18.
Brachypodium, a wild temperate grass with a small genome, was recently proposed as a new model organism for the large-genome grasses. In this study, we evaluated gene content and microcolinearity between diploid wheat (Triticum monococcum), Brachypodium sylvaticum, and rice at a local genomic region harboring the major wheat domestication gene Q. Gene density was much lower in T. monococcum (one per 41 kb) because of gene duplication and an abundance of transposable elements within intergenic regions as compared to B. sylvaticum (one per 14 kb) and rice (one per 10 kb). For the Q gene region, microcolinearity was more conserved between wheat and rice than between wheat and Brachypodium because B. sylvaticum contained two genes apparently not present within the orthologous regions of T. monococcum and rice. However, phylogenetic analysis of Q and leukotriene A-4 hydrolase-like gene orthologs, which were colinear among the three species, showed that Brachypodium is more closely related to wheat than rice, which agrees with previous studies. We conclude that Brachypodium will be a useful tool for gene discovery, comparative genomics, and the study of evolutionary relationships among the grasses but will not preclude the need to conduct large-scale genomics experiments in the Triticeae.  相似文献   

19.
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H2SO4) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.  相似文献   

20.
After the commercial cultivation of Ganoderma lucidum, that is becoming increasingly popular because of its valuable medicinal effects, a large amount of Ganoderma spent substrate (GSS) remains as a residual material. It is important to identify differences in the chemical compositions among GSS to indicate their suitability. This study was carried out to characterize and evaluate the substrates and GSS for the some chemical contents such as; pH, EC, organic carbon (C), total nitrogen (N), macro and micro elements and C:N ratios. The substrates were prepared by the mixtures of hornbeam and oak sawdust supplemented with wheat bran in a ratio of 20% (20WB) and tea manufacture waste in different ratios (10, 15, 20 and 25%). Organic C, C:N and pH values decreased in GSS, while N, P, K, Mg, Fe, Mn and Zn contents increased. EC and pH values of GSS varied between 1.13 and 2.33 dS m−1, and 5.14 and 5.69, respectively. GSS was found rich in all investigated mineral nutrients. The highest increases in all nutrient contents were generally determined in hornbeam sawdust with 20TW spent substrate. Initial mineral composition of the wastes influenced the mineral composition of the substrates and spent substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号