首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

2.
The development of a lentiviral system to deliver genes to specific cell types could improve the safety and the efficacy of gene delivery. Previously, we have developed an efficient method to target lentivectors to specific cells via an antibody–antigen interaction in vitro and in vivo. We report herein a targeted lentivector that harnesses the natural ligand–receptor recognition mechanism for targeted modification of c‐KIT receptor‐expressing cells. For targeting, we incorporate membrane‐bound human stem cell factor (hSCF), and for fusion, a Sindbis virus‐derived fusogenic molecule (FM) onto the lentiviral surface. These engineered vectors can recognize cells expressing surface CD117, resulting in efficient targeted transduction of cells in an SCF‐receptor dependent manner in vitro, and in vivo in xenografted mouse models. This study expands the ability of targeting lentivectors beyond antibody targets to include cell‐specific surface receptors. Development of a high titer lentivector to receptor‐specific cells is an attractive approach to restrict gene expression and could potentially ensure therapeutic effects in the desired cells while limiting side effects caused by gene expression in non‐target cells. Biotechnol. Bioeng. 2009; 104: 206–215 © 2009 Wiley Periodicals, Inc.  相似文献   

3.
Targeted delivery of drug molecules to specific cells in mammalian systems demonstrates a great potential to enhance the efficacy of current pharmaceutical therapies. Conventional strategies for pharmaceutical delivery are often associated with poor therapeutic indices and high systemic cytotoxicity, and this result in poor disease suppression, low surviving rates, and potential contraindication of drug formulation. The emergence of aptamers has elicited new research interests into enhanced targeted drug delivery due to their unique characteristics as targeting elements. Aptamers can be engineered to bind to their cognate cellular targets with high affinity and specificity, and this is important to navigate active drug molecules and deliver sufficient dosage to targeted malignant cells. However, the targeting performance of aptamers can be impacted by several factors including endonuclease‐mediated degradation, rapid renal filtration, biochemical complexation, and cell membrane electrostatic repulsion. This has subsequently led to the development of smart aptamer‐immobilized biopolymer systems as delivery vehicles for controlled and sustained drug release to specific cells at effective therapeutic dosage and minimal systemic cytotoxicity. This article reports the synthesis and in vitro characterization of a novel multi‐layer co‐polymeric targeted drug delivery system based on drug‐loaded PLGA‐Aptamer‐PEI (DPAP) formulation with a stage‐wise delivery mechanism. A thrombin‐specific DNA aptamer was used to develop the DPAP system while Bovine Serum Albumin (BSA) was used as a biopharmaceutical drug in the synthesis process by ultrasonication. Biophysical characterization of the DPAP system showed a spherical shaped particulate formulation with a unimodal particle size distribution of average size ~0.685 µm and a zeta potential of +0.82 mV. The DPAP formulation showed a high encapsulation efficiency of 89.4 ± 3.6%, a loading capacity of 17.89 ± 0.72 mg BSA protein/100 mg PLGA polymeric particles, low cytotoxicity and a controlled drug release characteristics in 43 days. The results demonstrate a great promise in the development of DPAP formulation for enhanced in vivo cell targeting. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:249–261, 2018  相似文献   

4.
There is considerable interest in the sub‐cellular targeting and delivery of biomolecules, therapeutic and imaging agents, and nanoparticles and nanoparticle conjugates into organelles for therapeutic and imaging purposes. To date, a number of studies have used sorting peptides for targeted delivery of cargo into different cell organelles but not into lysosomes. In this study, the delivery of 13‐nm gold nanoparticles across the cell membrane followed by targeted localisation into the lysosomes of a mammalian cell line was examined using novel combinations of cell‐penetrating peptides and lysosomal sorting peptides conjugated to the nanoparticles. Using a combination of fluorescence spectroscopy, fluorescence microscopy and transmission electron microscopy techniques, we show that these nanoconjugates were efficiently and selectively delivered into the lysosomes with minimal cytotoxic effects. This novel targeted delivery system may underpin the development of a new strategy for the treatment of lysosomal storage diseases by exploiting the large surface area of nanoparticles to deliver drugs or replacement enzymes directly to the lysosomes. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD) as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP) derived from a voltage-gated potassium channel (Kv2.1). The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD, a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.  相似文献   

6.
Gene therapy has emerged as one of the most promising therapeutic methods to treat various diseases. However, inadequate gene transfection efficacy during gene therapy demands further development of more efficient gene delivery strategies. Targeting genetic material to specific sites of action endows numerous advantages over non-targeted delivery. An ample variety of non-viral gene delivery vectors have been developed in recent years owing to the safety issues raised by viral vectors. Non-viral gene delivery vectors containing specific targeting ligands on their surfaces have been reported to enhance the gene transfection efficiency via receptor-mediated endocytosis for gene delivery. Among various targeting moieties investigated, carbohydrates and lectins (carbohydrate-binding proteins) played an essential role in gene delivery via either direct or reverse lectin targeting strategies. Lectins have a specific carbohydrate binding domain that can bind specifically to the carbohydrates. This review sheds light on various gene delivery nanovectors conjugated with either lectins or carbohydrates for enhanced gene transfection.  相似文献   

7.
Current cancer therapies have limited efficacy because they are highly toxic, ineffectively target tumors, and poorly penetrate tumor tissue. Engineered bacteria have the unique potential to overcome these limitations by actively targeting all tumor regions and delivering therapeutic payloads. Examples of transport mechanisms include specific chemotaxis, preferred growth, and hypoxic germination. Deleting the ribose/galactose chemoreceptor has been shown to cause bacterial accumulation in therapeutically resistant tumor regions. Recent advances in engineered therapeutic delivery include temporal control of cytotoxin release, enzymatic activation of pro-drugs, and secretion of physiologically active biomolecules. Bacteria have been engineered to express tumor-necrosis-factor-alpha, hypoxia-inducible-factor-1-alpha antibodies, interleukin-2, and cytosine deaminase. Combining these emerging targeting and therapeutic delivery mechanisms will yield a complete treatment toolbox and increase patient survival.  相似文献   

8.
Exosomes hold great potential to deliver therapeutic reagents for cancer treatment due to its inherent low antigenicity. However, several technical barriers, such as low productivity and ineffective cancer targeting, need to be overcome before wide clinical applications. The present study aims at creating a new biomanufacturing platform of cancer‐targeted exosomes for drug delivery. Specifically, a scalable, robust, high‐yield, cell line based exosome production process is created in a stirred‐tank bioreactor, and an efficient surface tagging technique is developed to generate monoclonal antibody (mAb)‐exosomes. The in vitro characterization using transmission electron microscopy, NanoSight, and western blotting confirm the high quality of exosomes. Flow cytometry and confocal laser scanning microscopy demonstrate that mAb‐exosomes have strong surface binding to cancer cells. Furthermore, to validate the targeted drug delivery efficiency, romidepsin, a histone deacetylase inhibitor, is loaded into mAb‐exosomes. The in vitro anti‐cancer toxicity study shows high cytotoxicity of mAb‐exosome‐romidepsin to cancer cells. Finally, the in vivo study using tumor xenograft animal model validates the cancer targeting specificity, anti‐cancer efficacy, and drug delivery capability of the targeted exosomes. In summary, new techniques enabling targeted exosomes for drug delivery are developed to support large‐scale animal studies and to facilitate the translation from research to clinics.  相似文献   

9.
Local delivery of viral vectors can enhance the efficacy of therapies by selectively affecting necessary tissues and reducing the required vector dose. Pluronic F127 is a thermosensitive polymer that undergoes a solution–gelation (sol–gel) transition as temperature increases and can deliver vectors without damaging them. While pluronics can be spread over large areas, such as the surface of an organ, before gelation, they lack sufficient adhesivity to remain attached to some tissues, such as the surface of the heart or mucosal surfaces. Here, we utilized blends of pluronic F127 and polycarbophil (PCB), a mucoadhesive agent, to provide the necessary adhesivity for local delivery of viral vectors to the cardiac muscle. The effects of PCB concentration on adhesive properties, sol–gel temperature transition and cytocompatibility were evaluated. Rheological studies showed that PCB decreased the sol–gel transition temperature at concentrations >1% and increased the adhesive properties of the gel. Furthermore, these gels were able to deliver viral vectors and transduce cells in vitro and in vivo in a neonatal mouse apical resection model. These gels could be a useful platform for delivering viral vectors over the surface of organs where increased adhesivity is required.  相似文献   

10.
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.  相似文献   

11.
In the present study, a novel cell penetrating peptide (CPP) named as Rath, has been identified from the avian infectious bursal disease virus. It has the potential to penetrate and translocate cargo molecules into cells independent of temperature. Additionally, it can deliver oligonucleotide in 30 min and antibodies within an hour intracellular to chicken embryonic fibroblast primary cells. As an ideal delivery vehicle, it has the ability to protect the cargo molecules in the presence of serum, nucleases and has minimal or no cytotoxicity at even higher peptide concentrations studied. The biophysical characterizations showed that Rath has a dominant β structure with a small α helix and has remarkable binding ability with protein and DNA. Thus, the characterization of unique Rath peptide to deliver protein or nucleic acid into the cells with non-covalent interaction could be used as an effective delivery method for various cell based assays.  相似文献   

12.
The clustered, regularly‐interspaced, short palindromic repeat (CRISPR)‐associated nuclease 9 (CRISPR/Cas9) is emerging as a promising genome‐editing tool for treating diseases in a precise way, and has been applied to a wide range of research in the areas of biology, genetics, and medicine. Delivery of therapeutic genome‐editing agents provides a promising platform for the treatment of genetic disorders. Although viral vectors are widely used to deliver CRISPR/Cas9 elements with high efficiency, they suffer from several drawbacks, such as mutagenesis, immunogenicity, and off‐target effects. Recently, non‐viral vectors have emerged as another class of delivery carriers in terms of their safety, simplicity, and flexibility. In this review, we discuss the modes of CRISPR/Cas9 delivery, the barriers to the delivery process and the application of CRISPR/Cas9 system for the treatment of genetic disorders. We also highlight several representative types of non‐viral vectors, including polymers, liposomes, cell‐penetrating peptides, and other synthetic vectors, for the therapeutic delivery of CRISPR/Cas9 system. The applications of CRISPR/Cas9 in treating genetic disorders mediated by the non‐viral vectors are also discussed.  相似文献   

13.
Abstract

Phospholipid micelles have proven to be the versatile pharmaceutical nanocarrier of choice for the delivery of poorly soluble chemotherapeutics for cancer therapy using various treatment modalities. Phospholipid micelles are typically expected to increase the accumulation of the loaded drugs in tumour tissues by taking advantage of the enhanced permeability and retention effect and by ligand-mediated active targeting. Furthermore, by tailoring the composition of the micelles, it is possible to enhance the intracellular delivery of the cargo. This review highlights the important advancements in our laboratory with polyethyleneglycol phosphatidylethanolamine (PEG-PE)-based micellar drug delivery systems for improvement of the therapeutic efficacy of poorly soluble anticancer drugs.  相似文献   

14.
The demonstration that dendritic cell (DC)-derived exosomes can be exploited for targeted RNAi delivery to the brain after systemic injection provides the first proof-of-concept for the potential of these naturally occurring vesicles as vehicles of drug delivery. As well as being amenable to existing in vivo targeting strategies already in use for viruses and liposomes, this novel approach offers the added advantages of in vivo safety and low immunogenicity. Fulfilment of the potential of exosome delivery methods warrants a better understanding of their biology, as well as the development of novel production, characterisation, targeting and cargo-loading nanotechnologies. Ultimately, exosome-mediated drug delivery promises to overcome important challenges in the field of therapeutics, such as delivery of drugs across otherwise impermeable biological barriers, such as the blood brain barrier, and using patient-derived tissue as a source of individualised and biocompatible therapeutic drug delivery vehicles.  相似文献   

15.
作为药物递送载体,脂质体(LPs)由于免疫原性低、稳定性好、毒性低和成本低而被认为是有前途的纳米药物递送系统。然而,LPs的靶向递送效果并不理想,往往会对正常的机体细胞造成伤害,因此,如何优化LPs药物,使其具有靶向性仍然是当前研究的重点。本文结合近年来国内外相关研究进展,重点介绍了多肽、抗体、糖类、配体,以及核酸适配体等靶向修饰物对LPs功能的影响,并归纳总结了各种靶向修饰目前存在的优势与挑战,以期对LPs给药系统的进一步研究提供科学参考及新药研发提供理论依据。  相似文献   

16.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   

17.
The development of an effective therapeutic vaccine to induce cancer-specific immunity remains an unsolved yet pressing priority requiring novel vaccine strategies. Here we have generated a series of vaccines in which bacteria deliver a plasmid encoding a tumor antigen under the control of a mammalian promoter in an attempt to induce an antitumor immune response. Utilizing a plasmid release mechanism involving the suicide of the carrier bacteria, we were able to engineer Listeria monocytogenes to induce antitumor immunity to a physiologically relevant tumor antigen, the cervical cancer oncoprotein E7. In a mouse model of cervical cancer, we were able to slow tumor growth and induce an effector CD8(+) T-cell response against the immunodominant epitope for E7. The CD8(+) T cells generated could both home to and penetrate the tumor. This is the first demonstration of in vivo efficacy of bactofection vectors in treating solid tumors. However, although this delivery system was more effective than administering plasmid alone, it was not as effective as L. monocytogenes engineered to deliver the E7 protein in impacting on established tumor growth.  相似文献   

18.
曾珠 《生物工程学报》2021,37(7):2272-2282
乳酸菌是被公认为安全的食品级微生物,广泛地应用于食品生产、保存以及作为益生菌促进人类健康。鉴于发展有效的投递药物分子策略的需要,乳酸菌成为了极有吸引力的用于口服、鼻饲及阴道进行粘膜投递药物分子的活载体。用乳酸菌作为药物分子的投递载体,安全性好,且可直接合成并投递目标蛋白,显著降低药物生产成本。到目前为止,乳酸菌作为粘膜投递载体,已成功地向粘膜组织投递了一系列功能蛋白用以治疗多种疾病。文中综述了近20年的数据,重点聚焦乳酸菌作为药物分子投递载体的发展和应用,为今后乳酸菌作为活载体的临床研究提供一定参考。  相似文献   

19.
Biomolecules such as proteins, DNA, and RNA are macromolecules and can not cross the cell membrane. However, cell-penetrating peptide (CPP) has been shown to deliver therapeutic biomolecules successfully into cells. The various and widely used CPPs including TAT, VP22, and Antp are mostly non-human originated CPPs, and are limited by their potential toxicity and immunogenicity. We report here on a newly identified novel cell-penetrating sequence (LPIN; RRKRRRRRK) from the nuclear localization sequence (NLS) of human nuclear phosphatase, LPIN3. LPIN-EGFP recombinant protein was concentration- and time-dependently delivered into cells and localized to the nucleus as well as the cytoplasm. It penetrated the cell membrane by lipid raft-mediated endocytosis by binding to heparan sulfate proteoglycan. LPIN-EGFP was successfully delivered into primary mouse splenocytes in vitro and it could be delivered into various tissues including liver, kidney, and intestine in mice after intra-peritoneal injection. This research suggests that LPIN-CPP could be used in a drug delivery system to deliver therapeutic biomolecules including peptides, proteins, DNA, and RNA and without the limitations of non-human originated CPPs such as TAT-CPP.  相似文献   

20.
Phospholipid micelles have proven to be the versatile pharmaceutical nanocarrier of choice for the delivery of poorly soluble chemotherapeutics for cancer therapy using various treatment modalities. Phospholipid micelles are typically expected to increase the accumulation of the loaded drugs in tumour tissues by taking advantage of the enhanced permeability and retention effect and by ligand-mediated active targeting. Furthermore, by tailoring the composition of the micelles, it is possible to enhance the intracellular delivery of the cargo. This review highlights the important advancements in our laboratory with polyethyleneglycol phosphatidylethanolamine (PEG-PE)-based micellar drug delivery systems for improvement of the therapeutic efficacy of poorly soluble anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号