首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-gated sodium channels are composed of a pore-forming alpha subunit and at least one auxiliary beta subunit. Both beta1 and beta2 are cell adhesion molecules that interact homophilically, resulting in ankyrin recruitment. In contrast, beta1, but not beta2, interacts heterophilically with contactin, resulting in increased levels of cell surface sodium channels. We took advantage of these results to investigate the molecular basis of beta1-mediated enhancement of sodium channel cell surface density, including elucidating structure-function relationships for beta1 association with contactin, ankyrin, and Nav1.2. beta1/beta2 subunit chimeras were used to assign putative sites of contactin interaction to two regions of the beta1 Ig loop. Recent studies have shown that glutathione S-transferase fusion proteins containing portions of Nav1.2 intracellular domains interact directly with ankyrinG. We show that native Nav1.2 associates with ankyrinG in cells in the absence of beta subunits and that this interaction is enhanced in the presence of beta1 but not beta1Y181E, a mutant that does not interact with ankyrinG. beta1Y181E does not modulate Nav1.2 channel function despite efficient association with Nav1.2 and contactin. beta1Y181E increases Nav1.2 cell surface expression, but not as efficiently as wild type beta1. beta1/beta2 chimeras exchanging various regions of the beta1 Ig loop were all ineffective in increasing Nav1.2 cell surface density. Our results demonstrate that full-length beta1 is required for channel modulation and enhancement of sodium channel cell surface expression.  相似文献   

2.
Voltage-gated sodium channels localize at high density in axon initial segments and nodes of Ranvier in myelinated axons. Sodium channels consist of a pore-forming alpha subunit and at least one beta subunit. beta1 is a member of the immunoglobulin superfamily of cell adhesion molecules and interacts homophilically and heterophilically with contactin and Nf186. In this study, we characterized beta1 interactions with contactin and Nf186 in greater detail and investigated interactions of beta1 with NrCAM, Nf155, and sodium channel beta2 and beta3 subunits. Using Fc fusion proteins and immunocytochemical techniques, we show that beta1 interacts with the fibronectin-like domains of contactin. beta1 also interacts with NrCAM, Nf155, sodium channel beta2, and Nf186 but not with sodium channel beta3. The interaction of the extracellular domains of beta1 and beta2 requires the region 169TEEEGKTDGEGNA181 located in the intracellular domain of beta2. Interaction of beta1 with Nf186 results in increased Nav).2 cell surface density over alpha alone, similar to that shown previously for contactin and beta2. We propose that beta1 is the critical communication link between sodium channels, nodal cell adhesion molecules, and ankyrinG.  相似文献   

3.
One of the major physiological roles of the neuronal voltage-gated sodium channel is to generate action potentials at the axon hillock/initial segment and to ensure propagation along myelinated or unmyelinated fibers to nerve terminal. These processes require a precise distribution of sodium channels accumulated at high density in discrete subdomains of the nerve membrane. In neurons, information relevant to ion channel trafficking and compartmentalization into sub-domains of the plasma membrane is far from being elucidated. Besides, whereas information on dendritic targeting is beginning to emerge, less is known about the mechanisms leading to the polarized distribution of proteins in axon. To obtain a better understanding of how neurons selectively target sodium channels to discrete subdomains of the nerve, we addressed the question as to whether any of the large intracellular regions of Nav1.2 contain axonal sorting and/or clustering signals. We first obtained evidence showing that addition of the cytoplasmic carboxy-terminal region of Nav1.2 restricted the distribution of a dendritic-axonal reporter protein to axons of hippocampal neurons. The analysis of mutants revealed that a di-leucine-based motif mediates chimera compartmentalization in axons and its elimination in soma and dendrites by endocytosis. The analysis of the others generated chimeras showed that the determinant conferring sodium channel clustering at the axonal initial segment is contained within the cytoplasmic loop connecting domains II-III of Nav1.2. Expression of a soluble Nav1.2 II-III linker protein led to the disorganization of endogenous sodium channels. The motif was sufficient to redirect a somatodendritic potassium channel to the axonal initial segment, a process involving association with ankyrin G. Thus, it is conceivable that concerted action of the two determinants is required for sodium channel compartmentalization in axons.  相似文献   

4.
5.
Voltage-gated sodium channels (Nav) are responsible for initiation and propagation of nerve, skeletal muscle, and cardiac action potentials. Nav are composed of a pore-forming alpha subunit and often one to several modulating beta subunits. Previous work showed that terminal sialic acid residues attached to alpha subunits affect channel gating. Here we show that the fully sialylated beta1 subunit induces a uniform, hyperpolarizing shift in steady state and kinetic gating of the cardiac and two neuronal alpha subunit isoforms. Under conditions of reduced sialylation, the beta1-induced gating effect was eliminated. Consistent with this, mutation of beta1 N-glycosylation sites abolished all effects of beta1 on channel gating. Data also suggest an interaction between the cis effect of alpha sialic acids and the trans effect of beta1 sialic acids on channel gating. Thus, beta1 sialic acids had no effect gating on the of the heavily glycosylated skeletal muscle alpha subunit. However, when glycosylation of the skeletal muscle alpha subunit was reduced through chimeragenesis such that alpha sialic acids did not impact gating, beta1 sialic acids caused a significant hyperpolarizing shift in channel gating. Together, the data indicate that beta1 N-linked sialic acids can modulate Nav gating through an apparent saturating electrostatic mechanism. A model is proposed in which a spectrum of differentially sialylated Nav can directly modulate channel gating, thereby impacting cardiac, skeletal muscle, and neuronal excitability.  相似文献   

6.
Accumulation of voltage-gated sodium channel Nav1 at the axon initial segment (AIS), results from a direct interaction with ankyrin G. This interaction is regulated in vitro by the protein kinase CK2, which is also highly enriched at the AIS. Here, using phosphospecific antibodies and inhibition/depletion approaches, we showed that Nav1 channels are phosphorylated in vivo in their ankyrin-binding motif. Moreover, we observed that CK2 accumulation at the AIS depends on expression of Nav1 channels, with which CK2 forms tight complexes. Thus, the CK2–Nav1 interaction is likely to initiate an important regulatory mechanism to finely control Nav1 phosphorylation and, consequently, neuronal excitability.  相似文献   

7.
The alpha subunit of voltage-gated Na(+) channels of brain, skeletal muscle, and cardiomyocytes is functionally modulated by the accessory beta(1), but not the beta(2) subunit. In the present study, we used beta(1)/beta(2) chimeras to identify molecular regions within the beta(1) subunit that are responsible for both the increase of the current density and the acceleration of recovery from inactivation of the human heart Na(+) channel (hH1). The channels were expressed in Xenopus oocytes. As a control, we coexpressed the beta(1)/beta(2) chimeras with rat brain IIA channels. In agreement with previous studies, the beta(1) extracellular domain sufficed to modulate IIA channel function. In contrast to this, the extracellular domain of the beta(1) subunit alone was ineffective to modulate hH1. Instead, the putative membrane anchor plus either the intracellular or the extracellular domain of the beta(1) subunit was required. An exchange of the beta(1) membrane anchor by the corresponding beta(2) subunit region almost completely abolished the effects of the beta(1) subunit on hH1, suggesting that the beta(1) membrane anchor plays a crucial role for the modulation of the cardiac Na(+) channel isoform. It is concluded that the beta(1) subunit modulates the cardiac and the neuronal channel isoforms by different molecular interactions: hH1 channels via the membrane anchor plus additional intracellular or extracellular regions, and IIA channels via the extracellular region only.  相似文献   

8.
Voltage-gated sodium channels (Nav) are complex glycoproteins comprised of an alpha subunit and often one to several beta subunits. We have shown that sialic acid residues linked to Nav alpha and beta1 subunits alter channel gating. To determine whether beta2-linked sialic acids similarly impact Nav gating, we co-expressed beta2 with Nav1.5 or Nav1.2 in Pro5 (complete sialylation) and in Lec2 (essentially no sialylation) cells. Beta2 sialic acids caused a significant hyperpolarizing shift in Nav1.5 voltage-dependent gating, thus describing for the first time an effect of beta2 on Nav1.5 gating. In contrast, beta2 caused a sialic acid-independent depolarizing shift in Nav1.2 gating. A deglycosylated mutant, beta(2-DeltaN), had no effect on Nav1.5 gating, indicating further the impact of beta2 N-linked sialic acids on Nav1.5 gating. Conversely, beta(2-DeltaN) modulated Nav1.2 gating virtually identically to beta2, confirming that beta2 N-linked sugars have no impact on Nav1.2 gating. Thus, beta2 modulates Nav gating through multiple mechanisms possibly determined by the associated alpha subunit. Beta1 and beta2 were expressed together with Nav1.5 or Nav1.2 in Pro5 and Lec2 cells. Together beta1 and beta2 produced a significantly larger sialic acid-dependent hyperpolarizing shift in Nav1.5 gating. Under fully sialylating conditions, the Nav1.2.beta1.beta2 complex behaved like Nav1.2 alone. When sialylation was reduced, only the sialic acid-independent depolarizing effects of beta2 on Nav1.2 gating were apparent. Thus, the varied effects of beta1 and beta2 on Nav1.5 and Nav1.2 gating are apparently synergistic and highlight the complex manner, through subunit- and sugar-dependent mechanisms, by which Nav activity is modulated.  相似文献   

9.
The membrane-skeleton of adult chicken neurons in the cerebellum and optic system is composed of polypeptides structurally and functionally related to the erythroid proteins spectrin and ankyrin, respectively. Neuronal spectrin comprises two distinct complexes that share a common alpha subunit (Mr 240,000) but which have structurally distinct polymorphic subunits (beta' beta spectrin; Mr 220/225,000; gamma spectrin, Mr 235,000); the brain-specific form (alpha gamma spectrin or fodrin) and an erythrocyte-specific form (alpha beta' beta spectrin). Two structurally related isoforms of ankyrin have also been identified and are termed alpha (Mr 260,000) and beta (Mr 237,000) ankyrin. Immunofluorescence demonstrates that the variants of spectrin and ankyrin, respectively, have different distributions within neurons. On the one hand, alpha gamma spectrin and beta ankyrin are present throughout the neuron, in the perikaryon, dendrites, and axon, whereas alpha beta' spectrin and alpha ankyrin are localized exclusively in the perikaryon and dendrites where they are actively segregated from alpha gamma spectrin and other components of axonal transport. This asymmetric distribution of spectrin and ankyrin isoforms is established in distinct stages during neuronal morphogenesis. Early in cerebellar and retinal development, alpha gamma spectrin is expressed in mitotic cells. Subsequently beta ankyrin and alpha gamma spectrin are coexpressed in postmitotic cells and gradually accumulate on the plasma membrane in a uniform pattern throughout the neuron during the phase of cell growth. At the onset of synaptogenesis and the cessation of cell growth, their levels of synthesis decline sharply while the assembled proteins remained as stable membrane components. Concomitantly, there is a dramatic induction in the accumulation of alpha ankyrin and alpha beta' spectrin, whose assembly is limited to the plasma membrane of the perikarya and dendrites. These results demonstrate that two successive, developmentally regulated programs of ankyrin and spectrin expression and patterning on the plasma membrane are involved in the assembly of the spectrin-based asymmetry in the neuronal membrane-skeleton, and that their asymmetric distribution is actively maintained throughout the life of the neuron.  相似文献   

10.
The heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins, Galphabetagamma) mediate the signalling process of a large number of receptors, known as G protein-coupled receptors. The C-terminal domain of the heterotrimeric G protein alpha-subunit plays a key role in the selective activation of G proteins by their cognate receptors. The interaction of this domain can take place at the end of a cascade including several successive conformational modifications. Galpha(s)(350-394) is the 45-mer peptide corresponding to the C-terminal region of the Galpha(s) subunit. In the crystal structure of the Galpha(s) subunit it encompasses the alpha4/beta6 loop, the beta6 beta-sheet segment and the alpha5 helix region. Following a previous study based on the synthesis, biological activity and conformational analysis of shorter peptides belonging to the same Galpha(s) region, Galpha(s)(350-394) was synthesized and investigated. The present study outlines the central role played by the residues involved in the alpha4/beta6 loop and beta6/alpha5 loops in the stabilization of the C-terminal Galpha(s)alpha-helix. H(2)O/(2)H(2)O exchange experiments, and NMR diffusion experiments show interesting evidence concerning the interaction between the SDS micelles and the polypeptide. These data prompt intriguing speculations on the role of the intracellular environment/cellular membrane interface in the stabilization and functionality of the C-terminal Galpha(s) region.  相似文献   

11.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

12.
Sodium channels consist of a pore-forming alpha subunit and auxiliary beta 1 and beta 2 subunits. The subunit beta 1 alters the kinetics and voltage-dependence of sodium channels expressed in Xenopus oocytes or mammalian cells. Functional modulation in oocytes depends on specific regions in the N-terminal extracellular domain of beta 1, but does not require the intracellular C-terminal domain. Functional modulation is qualitatively different in mammalian cells, and thus could involve different molecular mechanisms. As a first step toward testing this hypothesis, we examined modulation of brain Na(V)1.2a sodium channel alpha subunits expressed in Chinese hamster lung cells by a mutant beta1 construct with 34 amino acids deleted from the C-terminus. This deletion mutation did not modulate sodium channel function in this cell system. Co-immunoprecipitation data suggest that this loss of functional modulation was caused by inefficient association of the mutant beta 1 with alpha, despite high levels of expression of the mutant protein. In Xenopus oocytes, injection of approximately 10,000 times more mutant beta 1 RNA was required to achieve the level of functional modulation observed with injection of full-length beta 1. Together, these findings suggest that the C-terminal cytoplasmic domain of beta 1 is an important determinant of beta1 binding to the sodium channel alpha subunit in both mammalian cells and Xenopus oocytes.  相似文献   

13.
The Src homology 2 (SH2) domains of the p85 subunit of phosphatidylinositol 3'-kinase have been shown to bind to the tyrosine-phosphorylated platelet-derived growth factor receptor (PDGFR). Previously, we have demonstrated that p85 SH2 domains can also bind to the serine/threonine kinase A-Raf via a unique phosphorylation-independent interaction. In this report, we describe a new phosphotyrosine-independent p85 SH2-binding protein, ankyrin 3 (Ank3). In general, ankyrins serve a structural role by binding to both integral membrane proteins at the plasma membrane and spectrin/fodrin proteins of the cytoskeleton. However, smaller isoforms of Ank3 lack the membrane domain and are localized to late endosomes and lysosomes. We found that p85 binds directly to these smaller 120- and 105-kDa Ank3 isoforms. Both the spectrin domain and the regulatory domain of Ank3 are involved in binding to p85. At least two domains of p85 can bind to Ank3, and the interaction involving the p85 C-SH2 domain was found to be phosphotyrosine-independent. Overexpression of the 120- or 105-kDa Ank3 proteins resulted in significantly enhanced PDGFR degradation and a reduced ability to proliferate in response to PDGF. Ank3 overexpression also differentially regulated signaling pathways downstream from the PDGFR. Chloroquine, an inhibitor of lysosomal-mediated degradation pathways, blocked the ability of Ank3 to enhance PDGFR degradation. Immunofluorescence experiments demonstrated that both small Ank3 isoforms colocalized with the lysosomal-associated membrane protein and with p85 and the PDGFR. These results suggest that Ank3 plays an important role in lysosomal-mediated receptor down-regulation, likely through a p85-Ank3 interaction.  相似文献   

14.
We have investigated the molecular mechanisms whereby the I-II loop controls voltage-dependent inactivation in P/Q calcium channels. We demonstrate that the I-II loop is localized in a central position to control calcium channel activity through the interaction with several cytoplasmic sequences; including the III-IV loop. Several experiments reveal the crucial role of the interaction between the I-II loop and the III-IV loop in channel inactivation. First, point mutations of two amino acid residues of the I-II loop of Ca(v)2.1 (Arg-387 or Glu-388) facilitate voltage-dependent inactivation. Second, overexpression of the III-IV loop, or injection of a peptide derived from this loop, produces a similar inactivation behavior than the mutated channels. Third, the III-IV peptide has no effect on channels mutated in the I-II loop. Thus, both point mutations and overexpression of the III-IV loop appear to act similarly on inactivation, by competing off the native interaction between the I-II and the III-IV loops of Ca(v)2.1. As they are known to affect inactivation, we also analyzed the effects of beta subunits on these interactions. In experiments in which the beta(4) subunit is co-expressed, the III-IV peptide is no longer able to regulate channel inactivation. We conclude that (i) the contribution of the I-II loop to inactivation is partly mediated by an interaction with the III-IV loop and (ii) the beta subunits partially control inactivation by modifying this interaction. These data provide novel insights into the mechanisms whereby the beta subunit, the I-II loop, and the III-IV loop altogether can contribute to regulate inactivation in high voltage-activated calcium channels.  相似文献   

15.
Axon initial segments (AISs) and nodes of Ranvier are sites of action potential generation and propagation, respectively. Both domains are enriched in sodium channels complexed with adhesion molecules (neurofascin [NF] 186 and NrCAM) and cytoskeletal proteins (ankyrin G and betaIV spectrin). We show that the AIS and peripheral nervous system (PNS) nodes both require ankyrin G but assemble by distinct mechanisms. The AIS is intrinsically specified; it forms independent of NF186, which is targeted to this site via intracellular interactions that require ankyrin G. In contrast, NF186 is targeted to the node, and independently cleared from the internode, by interactions of its ectodomain with myelinating Schwann cells. NF186 is critical for and initiates PNS node assembly by recruiting ankyrin G, which is required for the localization of sodium channels and the entire nodal complex. Thus, initial segments assemble from the inside out driven by the intrinsic accumulation of ankyrin G, whereas PNS nodes assemble from the outside in, specified by Schwann cells, which direct the NF186-dependent recruitment of ankyrin G.  相似文献   

16.
Cyclic AMP-dependent protein kinase catalyzes the incorporation of 3-4 mol of phosphate into the alpha subunit of rat brain sodium channels in vitro or in situ. Digestion of phosphorylated sodium channels with CNBr yielded three major phosphorylated fragments of 25, 31, and 33 kDa. These fragments were specifically immunoprecipitated with site-directed antisera establishing their location within an intracellular loop between the first and second homologous domains containing residues 448 to 630 of sodium channel RI or residues 450-639 of sodium channel RII. Five of the seven major tryptic phosphopeptides generated from intact sodium channel alpha subunits were contained in each of the 25-, 31-, and 33-kDa CNBr fragments, indicating that most cAMP-dependent phosphorylation sites are in this domain. Since CNBr digestion of sodium channels which had been metabolically labeled with 32P in intact neurons yielded the same phosphorylated fragments, the phosphorylated region we have identified is the major location of phosphorylation in situ. Only serine residues were phosphorylated by cAMP-dependent protein kinase in vitro, while approximately 16% of the phosphorylation in intact neurons was on threonine residues that must lie outside the domain we have identified. Since this domain is phosphorylated in intact neurons, our results show that it is located on the intracellular side of the plasma membrane. These results are considered with respect to models for the transmembrane orientation of the alpha subunit.  相似文献   

17.
The pore of sodium channels contains a selectivity filter made of 4 amino acids, D/E/K/A. In voltage sensitive sodium channel (Nav) channels from jellyfish to human the fourth amino acid is Ala. This Ala, when mutated to Asp, promotes slow inactivation. In some Nav channels of pufferfishes, the Ala is replaced with Gly. We studied the biophysical properties of an Ala-to-Gly substitution (A1529G) in rat Nav1.4 channel expressed in Xenopus oocytes alone or with a β1 subunit. The Ala-to-Gly substitution does not affect monovalent cation selectivity and positively shifts the voltage-dependent inactivation curve, although co-expression with a β1 subunit eliminates the difference between A1529G and WT. There is almost no difference in channel fast inactivation, but the β1 subunit accelerates WT current inactivation significantly more than it does the A1529G channels. The Ala-to-Gly substitution mainly influences the rate of recovery from slow inactivation. Again, the β1 subunit is less effective on speeding recovery of A1529G than the WT. We searched Nav channels in numerous databases and noted at least four other independent Ala-to-Gly substitutions in Nav channels in teleost fishes. Thus, the Ala-to-Gly substitution occurs more frequently than previously realized, possibly under selection for alterations of channel gating.  相似文献   

18.
Voltage-dependent calcium channels (VDCCs) are heteromultimers composed of a pore-forming alpha1 subunit and auxiliary subunits, including the intracellular beta subunit, which has a strong influence on the channel properties. Voltage-dependent inhibitory modulation of neuronal VDCCs occurs primarily by activation of G-proteins and elevation of the free G beta gamma dimer concentration. Here we have examined the interaction between the regulation of N-type (alpha 1 B) channels by their beta subunits and by G beta gamma dimers, heterologously expressed in COS-7 cells. In contrast to previous studies suggesting antagonism of G protein inhibition by the VDCC beta subunit, we found a significantly larger G beta gamma-dependent inhibition of alpha 1 B channel activation when the VDCC alpha 1 B and beta subunits were coexpressed. In the absence of coexpressed VDCC beta subunit, the G beta gamma dimers, either expressed tonically or elevated via receptor activation, did not produce the expected features of voltage-dependent G protein modulation of N-type channels, including slowed activation and prepulse facilitation, while VDCC beta subunit coexpression restored all of the hallmarks of G beta gamma modulation. These results suggest that the VDCC beta subunit must be present for G beta gamma to induce voltage-dependent modulation of N-type calcium channels.  相似文献   

19.
Sodium channels isolated from mammalian brain are composed of alpha, beta1, and beta2 subunits. The auxiliary beta subunits do not form the ion conducting pore, yet play important roles in channel modulation and plasma membrane expression. beta1 and beta2 are transmembrane proteins with one extracellular V-set immunoglobulin (Ig) protein domain. It has been shown recently that beta1 and beta2 interact with the extracellular matrix proteins tenascin-C and tenascin-R. In the present study we show that rat brain beta1 and beta2, but not alphaIIA, subunits interact in a trans-homophilic fashion, resulting in recruitment of the cytoskeletal protein ankyrin to sites of cell-cell contact in transfected Drosophila S2 cells. Whereas alphaIIA subunits expressed alone do not cause cellular aggregation, beta subunits co-expressed with alphaIIA retain the ability to adhere and recruit ankyrin. Truncated beta subunits lacking cytoplasmic domains interact homophilically to produce cell aggregation but do not recruit ankyrin. Thus, the cytoplasmic domains of beta1 and beta2 are required for cytoskeletal interactions. It is hypothesized that sodium channel beta subunits serve as a critical communication link between the extracellular and intracellular environments of the neuron and may play a role in sodium channel placement at nodes of Ranvier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号