首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.  相似文献   

2.
Zeng S  Gong Z 《Gene》2002,294(1-2):45-53
In the present study, two gonad cDNA libraries from zebrafish testes and ovaries were constructed and a total of 1025 expressed sequence tag (EST) clones were generated from the two libraries: 501 from the testis library and 524 from the ovary library. A total of 641 of the EST clones were identified to share significant sequence identity with known sequences in GenBank, representing at least 478 different zebrafish genes. In order to understand the molecular compositions of the two gonad organs, the expression profiles of the identified clones in these two gonad cDNA libraries were analyzed. Both gonad libraries have a higher portion of clones for nuclear proteins and a lower portion for proteins in translational machinery, cytoskeleton and mitochondria than our previously characterized whole-adult cDNA library. Most abundant cDNA clones in the two gonad libraries were identified and over 10% of ovary clones were found to encode egg membrane proteins (zona pellucida or ZP proteins). Furthermore, the testis library showed a more even distribution of cDNA clones with relatively fewer abundant clones that tend to contribute redundant clones in EST projects; thus, the testis library can supply more unique and novel cDNA sequences in a zebrafish EST project. Another aim of this study is to identify cDNA clones that can be used as molecular markers for the analysis of the gonad development in zebrafish. Eleven potential clones were selected to analyze their expression patterns by Northern blot hybridization. Most of them showed a specific or predominant expression in the expected testis or ovary tissue. At last, four of the clones were found, by section in situ hybridization, to be expressed specifically in the germ cells of the testis or ovary and thus they are suitable molecular markers for analyses of spermatogenesis and oogenesis.  相似文献   

3.
Complementary BAC and BIBAC libraries were constructed from nuclear DNA of sunflower cultivar HA 89. The BAC library, constructed with BamHI in the pECBAC1 vector, contains 107,136 clones and has an average insert size of 140 kb. The BIBAC library was constructed with HindIII in the plant-transformation-competent binary vector pCLD04541 and contains 84,864 clones, with an average insert size of 137 kb. The two libraries combined contain 192,000 clones and are equivalent to approximately 8.9 haploid genomes of sunflower (3,000 Mb/1C), and provide a greater than 99% probability of obtaining a clone of interest. The frequencies of BAC and BIBAC clones carrying chloroplast or mitochondrial DNA sequences were estimated to be 2.35 and 0.04%, respectively, and insert-empty clones were less than 0.5%. To facilitate chromosome engineering and anchor the sunflower genetic map to its chromosomes, one to three single- or low-copy RFLP markers from each linkage group of sunflower were used to design pairs of overlapping oligonucleotides (overgos). Thirty-six overgos were designed and pooled as probes to screen a subset (5.1×) of the BAC and BIBAC libraries. Of the 36 overgos, 33 (92%) gave at least one positive clone and 3 (8%) failed to hit any clone. As a result, 195 BAC and BIBAC clones representing 19 linkage groups were identified, including 76 BAC clones and 119 BIBAC clones, further verifying the genome coverage and utility of the libraries. These BAC and BIBAC libraries and linkage group-specific clones provide resources essential for comprehensive research of the sunflower genome.  相似文献   

4.
To understand the molecular mechanism of the three pistils mutation in wheat, two forward subtractive cDNA libraries from two pairs of near-isogenic wheat lines, Chuanmai 28 three pistils (CMTP) and Chinese Spring three pistils (CSTP), were constructed using SSH. A total of 68 clones in CMTP lines and 197 clones in CSTP lines were identified as potentially over-expressed clones. Thirty-two out of 68 clones in CMTP lines belonged to unknown proteins; while, the remaining 30 clones shared homology to diverse classes of genes involved in protein modulation and protein synthesis, signal transduction, and ion transporters. Approximately 67% of genes in CSTP lines were either unclassified or had no matches (“no hits”) in the database and about 33% of identified genes encoded polypeptides with known functions. Sequence comparisons of cDNA clones between the two forward cDNA libraries revealed that four genes, encoding thioredoxin H, ubiquitin protein ligases, MCM2, and ubiquinol-cytochrome C reductase complex 14 kDa proteins, were over-expressed in both libraries. These genes would likely play an important role in determining the three pistils trait in the mutant wheat line.  相似文献   

5.
Suppression subtraction hybridization (SSH) libraries were constructed from RNA isolated from leaves of control and cold stress-induced Lepidium latifolium, a cold-tolerant plant species from high altitudes for isolation of cold-responsive genes. A total of 500 clones were obtained from the cold stress library. Dot blot expression analysis identified 157 clones that were upregulated and 75 that were downregulated during cold stress. These clones selected on the basis of their expression patterns on dot blot were sequenced. As much as 27 and 17 genes were identified from the forward and reverse libraries, respectively. The genes identified revealed homology with genes involved in diverse processes such as gene regulation/signaling, photosynthesis, DNA damage repair protein, pathogenesis-related protein, senescence-associated proteins and proteins with unknown functions.  相似文献   

6.
7.
Two bacterial artificial chromosome (BAC) libraries were constructed from an inbred line derived from a cultivar of cucumber (Cucumis sativus L.). Intact nuclei were isolated and embedded in agarose plugs, and high-molecular-weight DNA was subsequently partially digested with BamHI or EcoRI. Ligation of double size-selected DNA fragments with the pECBAC1 vector yielded two libraries containing 23,040 BamHI and 18,432 EcoRI clones. The average BamHI and EcoRI insert sizes were estimated to be 107.0 kb and 100.8 kb, respectively, and BAC clones lacking inserts were 1.3% and 14.5% in the BamHI and EcoRI libraries, respectively. The two libraries together represent approximately 10.8 haploid cucumber genomes. Hybridization with a C0t-1 DNA probe revealed that approximately 36% of BAC clones likely carried repetitive sequence-enriched DNA. The frequencies of BAC clones that carry chloroplast or mitochondrial DNA range from 0.20% to 0.47%. Four sequence-characterized amplified region (SCAR), four simple sequence repeat, and an randomly amplified polymorphic DNA marker linked with yield component quantitative trait loci were used either as probes to hybridize high-density colony filters prepared from both libraries or as primers to screen an ordered array of pooled BAC DNA prepared from the BamHI library. Positive BAC clones were identified in predicted numbers, as screening by polymerase chain reaction amplification effectively overcame the problems associated with an overabundance of positives from hybridization with two SCAR markers. The BAC clones identified herein that are linked to the de (determinate habit) and F (gynoecy) locus will be useful for positional cloning of these economically important genes. These BAC libraries will also facilitate physical mapping of the cucumber genome and comparative genome analyses with other plant species.  相似文献   

8.
Expressed sequence tags (ESTs) were obtained from complementary DNA libraries derived from the brain of the cichlid fish, Oreochromis niloticus. Single-pass sequencing of 183 cDNA clones generated 294 ESTs; 57 of these clones (31%) were identified based on their similarity to sequences in GenBank.  相似文献   

9.
Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector   总被引:12,自引:0,他引:12  
This is the first report of large insert genomic DNA libraries constructed in a binary-BAC (BIBAC) vector. Genomic DNA libraries containing approximately 4.6 haploid nuclear genomic equivalents were constructed for Lycopersicon esculentum (cv. Mogeor) and Lycopersicon pennellii (LA716) in the BIBAC2 vector. The L. esculentum library has an average insert size of 125 kb and is comprised of 42 272 individual colonies stored as frozen cultures in a 384-well format (108 plates). The L. pennellii library has an average insert size of 90 kb and is comprised of 53 760 individual clones (140 384-well plates). In each of the libraries, it is estimated that 90% of the colonies contain genomic DNA inserts. The composition of the L. esculentum and L. pennellii libraries was determined by analyzing a series of randomly selected clones. The L. esculentum library was surveyed for clones containing chloroplast DNA (1.4%), mitochondrial DNA (0.012%) and repetitive DNA motifs. BIBAC clones that may contain a gene of interest can be identified from these libraries by colony hybridization with homologous or heterologous probes or by PCR pooling techniques. Once identified, BIBAC genomic DNA library clones are immediately suitable for Agrobacterium tumefaciens-mediated plant transformation.  相似文献   

10.
A genomic DNA library was made from the alkaliphilic cellulase-producing Bacillus agaradhaerans in order to prove our technologies for gene isolation prior to using them with samples of DNA isolated directly from environmental samples. Clones expressing a cellulase activity were identified and sequenced. A new cellulase gene was identified. Genomic DNA libraries were then made from DNA isolated directly from the Kenyan soda lakes, Lake Elmenteita and Crater Lake. Crater Lake clones expressing a cellulase activity and Lake Elmenteita clones expressing a lipase/esterase activity were identified and sequenced. These were encoded by novel genes as judged by DNA sequence comparisons. Genomic DNA libraries were also made from laboratory enrichment cultures of Lake Nakuru and Lake Elmenteita samples. Selective enrichment cultures were grown in the presence of carboxymethylcellulose (CMC) and olive oil. A number of new cellulase and lipase/esterase genes were discovered in these libraries. Cellulase-positive clones from Lake Nakuru were isolated at a frequency of 1 in 15,000 from a library made from a CMC enrichment as compared to 1 in 60,000 from a minimal medium enrichment. Esterase/lipase-positive clones from Lake Elmenteita were isolated with a frequency of 1 in 30,000 from a library made from an olive-oil enrichment as compared to 1 in 100,000 from an environmental library.Communicated by K. Horikoshi  相似文献   

11.
The goals of this work were to create germ-cell-stage-specific cDNA libraries from mouse spermatogenic cells and to employ a novel two-step genetic screen to identify gene sequences present during the critical meiotic stage of spermatogenesis. Highly enriched germ-cell fractions were prepared from adult and juvenile mouse testes, and purity of these fractions was extensively analyzed by light and electron microscopy. Standard techniques were used to prepare cDNA libraries from populations of mixed leptotene and zygotene (L/Z) spermatocytes, pachytene (P) spermatocytes, and round spermatids. These libraries were analyzed with respect to representation of sequences from ubiquitously expressed genes, and from genes expressed at specific germ-cell stages as well as from genes expressed in testicular somatic cells. For the first step of the screening procedure, testicular cDNA was prepared from mutant mice carrying the T(X;11)38H chromosomal translocation that causes spermatogenic arrest at early meiotic prophase. This mixed cDNA probe was used to screen the libraries from L/Z and P spermatocytes to detect sequences that failed to hybridize. The clones identified were characterized for ability to hybridize to various germ-cell-specific cDNAs to verify that they represented sequences present in normal spermatogenic meiotic cells. These clones were then subjected to a second screening with another mutant probe; this time the cDNA probe was from testes of sterile mice bearing the T(X;16)16H chromosomal translocation that causes spermatogenic arrest at late meiotic prophase. This screen identified 27 clones that were not represented in testicular cDNA from T38-bearing mice or from T16-bearing mice. These clones may represent sequences essential for normal completion of the genetic events of meiosis during spermatogenesis. Likewise, the secondary screen identified 19 clones that were not represented in testicular cDNA from T38-bearing mice but were represented in testicular cDNA of T16-bearing mice. These clones are thus gene sequences present in spermatogenic cells during the time from early meiotic prophase to mid-to-late prophase. This strategy represents the first use of genetic aberrations in differential screening to identify genes expressed at specific times during mammalian spermatogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
The molecular diversity of rumen methanogens in feedlot cattle and the composition of the methanogen populations in these animals from two geographic locations were investigated using 16S rRNA gene libraries prepared from pooled PCR products from 10 animals in Ontario (127 clones) and 10 animals from Prince Edward Island (114 clones). A total of 241 clones were examined, with Methanobrevibacter ruminantium accounting for more than one-third (85 clones) of the clones identified. From these 241 clones, 23 different 16S rRNA phylotypes were identified. Feedlot cattle from Ontario, which were fed a corn-based diet, revealed 11 phylotypes (38 clones) not found in feedlot cattle from Prince Edward Island, whereas the Prince Edward Island cattle, which were fed potato by-products as a finishing diet, had 7 phylotypes (42 clones) not found in cattle from Ontario. Five sequences, representing the remaining 161 clones (67% of the clones), were common in both herds. Of the 23 different sequences, 10 sequences (136 clones) were 89.8 to 100% similar to those from cultivated methanogens belonging to the orders Methanobacteriales, Methanomicrobiales, and Methanosarcinales, and the remaining 13 sequences (105 clones) were 74.1 to 75.8% similar to those from Thermoplasma volcanium and Thermoplasma acidophilum. Overall, nine possible new species were identified from the two clone libraries, including two new species belonging to the order Methanobacteriales and a new genus/species within the order Methanosarcinales. From the present survey, it is difficult to conclude whether the geographical isolation between these two herds or differences between the two finishing diets directly influenced community structure in the rumen. Further studies are warranted to properly assess the differences between these two finishing diets.  相似文献   

15.
Bacterial artificial chromosome (BAC) library is an important tool in genomic research. We constructed two libraries from the genomic DNA of grass carp (Ctenopharyngodon idellus) as a crucial part of the grass carp genome project. The libraries were constructed in the EcoRI and HindIII sites of the vector CopyControl pCC1BAC. The EcoRI library comprised 53,000 positive clones, and approximately 99.94% of the clones contained grass carp nuclear DNA inserts (average size, 139.7 kb) covering 7.4× haploid genome equivalents and 2% empty clones. Similarly, the HindIII library comprised 52,216 clones with approximately 99.82% probability of finding any genomic fragments containing single-copy genes; the average insert size was 121.5 kb with 2.8% insert-empty clones, thus providing genome coverage of 6.3× haploid genome equivalents of grass carp. We selected gene-specific probes for screening the target gene clones in the HindIII library. In all, we obtained 31 positive clones, which were identified for every gene, with an average of 6.2 BAC clones per gene probe. Thus, we succeeded in constructing the desired BAC libraries, which should provide an important foundation for future physical mapping and whole-genome sequencing in grass carp.  相似文献   

16.
Three large-insert genomic DNA libraries of common wheat, Triticum aestivum cv. Chinese Spring, were constructed in a newly developed transformation-competent artificial chromosome (TAC) vector, pYLTAC17, which accepts and maintains large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. The vector contains the cis sequence required for Agrobacterium-mediated gene transfer into grasses. The average insert sizes of the three genomic libraries were approximately 46, 65 and 120 kbp, covering three haploid genome equivalents. Genomic libraries were stored as frozen cultures in a 96-well format, each well containing approximately 300-600 colonies (12 plates for small library, four for medium-size library and four for large library). In each of the libraries, approximately 80% of the colonies harbored genomic DNA inserts of >50 kbp. TAC clones containing gene(s) of interest were identified by the pooled PCR technique. Once the target TAC clones were isolated, they could be immediately transferred into grass genomes with the Agrobacterium system. Five clones containing the thionin type I genes (single copy per genome), corresponding to each of the three genomes (A, B and D), were successfully selected by the pooled PCR method, in addition to an STS marker (aWG464; single copy per genome) and CAB (a multigene family). TAC libraries constructed as described here can be used to isolate genomic clones containing target genes, and to carry out genome walking for positional cloning.  相似文献   

17.
Studies of the prevalence and identity of genes encoding resistance to antibiotics in a microbial community are usually carried out on only the cultivable members of the community. However, it is possible to include the as-yet-uncultivable organisms present by adopting a metagenomic approach to such studies. In this investigation, four metagenomic libraries of the oral microbiota were prepared from three groups of 20 adult humans and screened for antibiotic-resistant clones. Clones resistant to tetracycline and amoxycillin were present in all four libraries while gentamicin-resistant clones were found in three of the libraries. The genes encoding tetracycline resistance in the clones were identified and found to be tet(M), tet(O), tet(Q), tet(W), tet37 and tet(A). However, only the first three of these were detected in all three groups of individuals investigated.  相似文献   

18.
Large scale sequencing of randomly selected cDNA clones was carried out to investigate the feasibility of this method for isolating plant genes. cDNA libraries were made using mRNA prepared from suspension-cultured cells of rice (Oryza sativa L.). Partial nucleotide sequences of 830 individual cDNA clones have been determined and compared with the GenBank database. Approximately 8% of the cDNA clones could be identified as particular genes. This method provides the opportunity to isolate large numbers of plant genes.  相似文献   

19.
To facilitate isolation and characterization of disease and insect resistance genes important to potato, two bacterial artificial chromosome (BAC) libraries were constructed from genomic DNA of the Mexican wild diploid species, Solanum pinnatisectum, which carries high levels of resistance to the most important potato pathogen and pest, the late blight and the Colorado potato beetle (CPB). One of the libraries was constructed from the DNA, partially digested with BamHI, and it consists of 40,328 clones with an average insert size of 125 kb. The other library was constructed from the DNA partially digested with EcoRI, and it consists of 17,280 clones with an average insert size of 135 kb. The two libraries, together, represent approximately six equivalents of the wild potato haploid genome. Both libraries were evaluated for contamination with organellar DNA sequences and were shown to have a very low percentage (0.65–0.91%) of clones derived from the chloroplast genome. High-density filters, prepared from the two libraries, were screened with ten restriction fragment length polymorphism (RFLP) markers linked to the resistance genes for late blight, CPB, Verticillium wilt and potato cyst nematodes, and the gene Sr1 for the self-incompatibility S-locus. Thirty nine positive clones were identified and at least two positive BAC clones were detected for each RFLP marker. Four markers that are linked to the late blight resistance gene Rpi1 hybridized to 14 BAC clones. Fifteen BAC clones were shown to harbor the PPO (polyphenol oxidase) locus for the CPB resistance by three RFLP probes. Two RFLP markers detected five BAC clones that were linked to the Sr1 gene for self-incompatibility. These results agree with the librarys predicted extent of coverage of the potato genome, and indicated that the libraries are useful resources for the molecular isolation of disease and insect resistance genes, as well as other economically important genes in the wild potato species. The development of the two potato BAC libraries provides a starting point, and landmarks for BAC contig construction and chromosome walking towards the map-based cloning of agronomically important target genes in the species.Communicated by H.F. Linskens  相似文献   

20.
Household anaerobic digesters have been installed across rural China for biogas production, but information on methanogen community structure in these small biogas units is sparsely available. By creating clone libraries for 16S rRNA and methyl coenzyme M reductase alpha subunit (mcrA) genes, we investigated the methanogenic consortia in a household biogas digester treating swine manure. Operational taxonomic units (OTUs) were defined by comparative sequence analysis, seven OTUs were identified in the 16S rRNA gene library, and ten OTUs were identified in the mcrA gene library. Both libraries were dominated by clones highly related to the type strain Methanocorpusculum labreanum Z, 64.0 % for 16S rRNA gene clones and 64.3 % for mcrA gene clones. Additionally, gas chromatography assays showed that formic acid was 84.54 % of the total volatile fatty acids and methane was 57.20 % of the biogas composition. Our results may help further isolation and characterization of methanogenic starter strains for industrial biogas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号