首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Vitamin E is a major chain-breaking antioxidant which is able to reduce liver oxidative damage without modifying aerobic capacity in T(3)-treated rats. We investigated whether vitamin E has similar effects in hyperthyroid state induced by cold exposure. Cold exposure increased aerobic capacity and O(2) consumption in homogenates and mitochondria and tissue mitochondrial protein content. Vitamin E did not modify aerobic capacity and mitochondrial protein content of cold liver, but increased ADP-stimulated respiration of liver preparations. Succinate-supported H(2)O(2) release rates were increased by cold during basal and stimulated respiration, whereas the pyruvate/malate-supported ones increased only during basal respiration. Vitamin administration to cold-exposed rats decreased H(2)O(2) release rates with both substrates during basal respiration. This effect reduced ROS flow from mitochondria to cytosol, limiting liver oxidative damage. Cold exposure also increased mitochondrial capacity to remove H(2)O(2), which was reduced by vitamin treatment, showing that the antioxidant also lowers H(2)O(2) production rate. The different effects of cold exposure and vitamin treatment on H(2)O(2) generation were also found in the presence of respiration inhibitors. Although this can suggest that the cold and vitamin induce opposite changes in mitochondrial content of autoxidizable electron carriers, it is likely that vitamin effect is due to its capacity to scavenge superoxide radical. Finally, vitamin E reduced mitochondrial oxidative damage and susceptibility to oxidants, and prevented Ca(2+)-induced swelling elicited by cold. In the whole, our results suggest that vitamin E is able to maintain aerobic capacity and attenuate oxidative stress of hepatic tissue in cold-exposed rats modifying mitochondrial population characteristics.  相似文献   

2.
Previous studies have shown that T3 treatment and cold exposure induce similar biochemical changes predisposing rat liver to oxidative stress. This suggests that the liver oxidative damage observed in experimental and functional hyperthyroidism is mediated by thyroid hormone. To support this hypothesis we investigated whether middle-term cold exposure (2 and 10 days), like T3 treatment, also increases H2O2 release by liver mitochondria. We found that the rate of H2O2 release increased only during State 4 respiration, but faster flow of reactive oxygen species (ROS) from mitochondria to the cytosolic compartment was ensured by the concomitant increase in tissue mitochondrial proteins. Cold exposure also increased the capacity of mitochondria to remove H2O2. This indicates that cold causes accelerated H2O2 production, which might depend on enhanced autoxidizable carrier content and should lead to increased mitochondrial damage. Accordingly, mitochondrial levels of hydroperoxides and protein-bound carbonyls were higher after cold exposure. Levels of low-molecular weight antioxidants were not related to the extent of oxidative damage, but susceptibility to both in vitro oxidative challenge and Ca2+-induced swelling increased in mitochondria from cold exposed rats. The cold-induced changes in several parameters, including susceptibility to swelling, were time dependent, because they were apparent or greater after 10 days cold exposure. The cold-induced increase in swelling may be a feedback mechanism to limit tissue oxidative stress, purifying the mitochondrial population from ROS-overproducing mitochondria, and the time course for such change is consistent with the gradual development of cold adaptation.  相似文献   

3.
Previous study showed that exercise induces higher oxidative damage and respiratory capacity reduction in hyperthyroid than in euthyroid skeletal muscle. Because impaired cell function can result from mitochondrial dysfunction, we evaluated the changes induced by exercise in oxygen consumption of skeletal muscle mitochondria from euthyroid and hyperthyroid rats. The mitochondrial function was related with indices of oxidative damage and nitric oxide production, scavenger levels and mitochondrial ROS production rates. Our results show that exercise increased state 4 and decreased state 3 respiration, and the highest changes happened in hyperthyroid preparations. This was consistent with the observation that oxidative damage and NO(*) derivative content were increased by T(3) administration and exercise, reaching the highest levels in hyperthyroid exercised rats. Our results also indicate that the high mitochondrial oxidative damage induced by T(3) and exercise is due to enhanced ROS production, which is dependent on increases in mitochondrial content and reduction degree, respectively, of autoxidizable electron carriers.  相似文献   

4.
We investigated whether swim training modifies the effect of T3-induced hyperthyroidism on metabolism and oxidative damage in rat muscle. Respiratory capacities, oxidative damage, levels of antioxidants, and susceptibility to oxidative challenge of homogenates were determined. Mitochondrial respiratory capacities, H2O2 release rates, and oxidative damage were also evaluated. T3-treated rats exhibited increases in muscle respiratory capacity, which were associated with enhancements in mitochondrial respiratory capacity and tissue mitochondrial protein content in sedentary and trained animals, respectively. Hormonal treatment induced muscle oxidative damage and GSH depletion. Both effects were reduced by training, which also attenuated tissue susceptibility to oxidative challenge. The changes in single antioxidant levels were slightly related to oxidative damage extent, but the examination of parameters affecting the susceptibility to oxidants indicated that training was associated with greater effectiveness of the muscle antioxidant system. Training also attenuated T3-induced increases in H2O2 production and, therefore, oxidative damage of mitochondria by lowering their content of autoxidizable electron carriers. The above results suggest that moderate training is able to reduce hyperthyroid state-linked tissue oxidative damage, increasing antioxidant protection and decreasing the ROS flow from the mitochondria to the cytoplasmic compartment.  相似文献   

5.
The effect of cold exposure and of PTU and PTU + T3 administration on the protein content and succinic dehydrogenase activity of three mitochondrial populations obtained from rat liver was examined. Our results indicated the following: Succinic dehydrogenase activity increases mainly in the light mitochondrial fraction of cold-exposed rats. PTU administration of cold-exposed animals does not affect the increment in enzyme activity of the heavy fraction but blocks the increment of the light fraction. PTU + T3 administration restores succinic dehydrogenase activity to the values prevalent in normal cold-exposed rats. These findings suggest that thyroid hormone may stimulate the formation of light mitochondria during cold exposure.  相似文献   

6.
Hyperthyroidism increases metabolic rate, mitochondrial ATP production, and protein synthesis, but it remains to be determined whether all tissues and synthesis of specific protein pools are equally affected by hyperthyroidism. Previous studies showed that mitochondrial function was less responsive to elevated triiodothyronine (T(3)) levels in the low-oxidative plantaris muscle compared with other tissues in rats. We tested the hypothesis that in T(3)-treated animals mitochondrial protein synthesis would increase in oxidative but not glycolytic tissues. Male rats received either T(3) (200 mug/day, n = 10) or saline (controls, n = 9) by subcutaneous pump for 14 days, and then in vivo protein synthesis rates were measured using [(15)N]phenylalanine in liver, heart, plantaris, and red gastrocnemius (Red Gast). Mitochondrial protein synthesis rate in T(3)-treated rats was higher than in controls by 62% in Red Gast and plantaris and 89 and 115% in liver and heart, respectively (P < 0.01). Cytoplasmic protein synthesis rates in the T(3) group were 107-176% higher than control values (P < 0.01). There was also indirect evidence that protein breakdown was increased in all tissues of the T(3)-treated rats. Phosphorylation of selected regulators of protein synthesis in plantaris and Red Gast (mTOR, p70 S6 kinase, 4E-BP1), however, were not significantly affected by T(3). We conclude that T(3) infusion stimulates a general increase in mitochondrial and cytoplasmic protein synthesis rate among tissues and that this does not appear to explain the tissue-specific responses in mitochondrial oxidative capacity.  相似文献   

7.
The effects of the thyroid state on oxidative damage, antioxidant capacity, susceptibility to in vitro oxidative stress and Ca(2+)-induced permeabilization of mitochondria from rat tissues (liver, heart, and gastrocnemious muscle) were examined. Hypothyroidism was induced by administering methimazole in drinking water for 15 d. Hyperthyroidism was elicited by a 10 d treatment of hypothyroid rats with triiodothyronine (10 micro g/100 g body weight). Mitochondrial levels of hydroperoxides and protein-bound carbonyls significantly decreased in hypothyroid tissues and were reported above euthroid values in hypothyroid rats after T(3) treatment. Mitochondrial vitamin E levels were not affected by changes of animal thyroid state. Mitochondrial Coenzyme Q9 levels decreased in liver and heart from hypothyroid rats and increased in all hyperthyroid tissues, while Coenzyme Q10 levels decreased in hypothyroid liver and increased in all hyperthyroid tissues. The antioxidant capacity of mitochondria was not significantly different in hypothyroid and euthyroid tissues, whereas it decreased in the hyperthyroid ones. Susceptibility to in vitro oxidative challenge decreased in mitochondria from hypothyroid tissues and increased in mitochondria from hyperthyroid tissues, while susceptibility to Ca(2+)-induced swelling decreased only in hypothyroid liver mitochondria and increased in mitochondria from all hyperthyroid tissues. The tissue-dependence of the mitochondrial susceptibility to stressful conditions in altered thyroid states can be explained by different thyroid hormone-induced changes in mitochondrial ROS production and relative amounts of mitochondrial hemoproteins and antioxidants. We suggest that susceptibilities to oxidants and Ca(2+)-induced swelling may have important implications for the thyroid hormone regulation of the turnover of proteins and whole mitochondria, respectively.  相似文献   

8.
Possible effects of adrenaline, noradrenaline, vasopressin, and angiotensin II to increase 14CO2 production from [1-14C]oleate were examined in hepatocytes from fed L-triiodothyronine (T3)-treated or control rats. Rates of 14CO2 production were decreased and rates of ketogenesis increased in hepatocytes from T3-treated rats. These changes were accompanied by a marked shift of the 3-hydroxybutyrate:acetoacetate concentration ratio towards acetoacetate. Rates of glucose and lactate release were decreased. Whereas the Ca2+-mobilizing hormones increased 14CO2 production from [1-14C]oleate by 64-84% with hepatocytes from control rats, they increased 14CO2 production from [1-14C]oleate by on 24-32% with hepatocytes from T3-treated rats. The magnitude of the response to the Ca2+-mobilizing hormones in hepatocytes from T3-treated rats was increased by the addition of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, to the incubation medium (increases of 52-88%). In the presence of 3-mercaptopicolinate, the 3-hydroxybutyrate:acetoacetate concentration ratio in hepatocytes from fed, T3-treated rats was similar to that in hepatocytes from control rats in the absence of 3-mercaptopicolinate. The results demonstrate that hyperthyroidism per se does not lead to a loss of sensitivity, in terms of oleate oxidation, either to the catecholamines or to vasopressin and angiotensin II. The impaired ability of hepatocytes from T3-treated rats to respond to these hormones is a consequence of decreased net glycolytic flux or a more oxidized mitochondrial redox state.  相似文献   

9.
Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.  相似文献   

10.
Mitochondrial membrane fatty acid composition has been proposed to play a role in determining mitochondrial proton leak rate. The purpose of this study was to determine if feeding rats diets with different fatty acid sources produces changes in liver proton leak and H(2)O(2) production. Six-month-old male FBNF(1) rats were fed diets with a primary fat source of either corn or fish oil for a 6-month period. As expected, diet manipulations produced substantial differences in mitochondrial fatty acid composition. These changes were most striking for 20:4n6 and 22:6n3. However, proton leak and phosphorylation kinetics as well as lipid and protein oxidative damage were not different (P > 0.10) between fish and corn oil groups. Metabolic control analysis, however, did show that control of both substrate oxidation and phosphorylation was shifted away from substrate oxidation reactions to increased control by phosphorylation reactions in fish versus corn oil groups. Increased mitochondrial H(2)O(2) production was observed in corn versus fish oil-fed rats when mitochondria were respiring on succinate alone or on either succinate or pyruvate/malate in the presence of antimycin A. These results show that mitochondrial H(2)O(2) production and the regulation of oxidative phosphorylation are altered in liver mitochondria from rats consuming diets with either fish or corn oil as the primary lipid source.  相似文献   

11.
12.
13.
The effect of increased serum levels of thyroid hormone (triiodothyronine, T3) on young rat testis spermatogenesis was studied by analysing molecular and morphological parameters. Hyperthyroidism was induced by either T3-treatment or 2- and 10-day cold exposure. The poly(ADP-ribosyl)ation of proteins catalysed by poly(ADP-ribose) polymerase, which is particularly active at specific stages of rat spermatogenesis, was analysed as molecular index of DNA damage and cell stress. Poly(ADP-ribose) polymerase activity rose after both T3-treatment and 2- and 10-day cold exposure, with a trend of 10-day cold-exposed rats towards control values. In all hyperthyroid rats poly(ADP-ribose) turnover, as a contribution of both poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase), was enhanced with respect to euthyroid animals. Poly(ADP-ribosyl)ation of proteins occurred with long and branched polymers suggesting an increased involvement of the modification system in DNA repair. Morphological changes of germ tissue were observed in hyperthyroid rats, mainly a high reduction of mature cells in the seminiferous tubule, and evidence of germ cell apoptosis was obtained by TUNEL method. In control animals germ cell apoptosis was within physiological levels. Conversely, in hyperthyroid rats a dramatic increase in the number of TUNEL-positive cells (some spermatogonia and numerous primary spermatocytes) was found, even though the increase was lower in 10-day than in 2-day cold-exposed animals.  相似文献   

14.
15.
Cu deficiency disrupts the architecture of mitochondria, impairs respiration, and inhibits the activity of cytochrome c oxidase - the terminal, Cu-dependent respiratory complex (Complex IV) of the electron transport chain. This suggests that perturbations in the respiratory chain may contribute to the changes in mitochondrial structure caused by Cu deficiency. This study investigates the effect of Cu deficiency on Ca2+-induced mitochondrial swelling as it relates to changes in respiratory complex activities in cardiac mitochondria of rats. Male weanling rats were fed diets containing either no added Cu (Cu0), 1.5 mg Cu/kg (Cu1.5), 3 mg Cu/kg (Cu3) or 6 mg Cu/kg (Cu6). The rate of Ca2+-induced mitochondrial swelling in the presence of succinate and oligomycin was reduced, and the time to reach maximal swelling was increased only in the rats consuming Cu0 diet. Cytochrome c oxidase activity was reduced 60% and 30% in rats fed Cu0 and Cu1.5, respectively, while NADH:cytochrome c reductase (Complex I+ComplexIII) activity was reduced 30% in rats consuming both Cu0 and Cu1.5. Mitochondrial swelling is representative of mitochondrial permeability transition pore (MPTP) formation and the results suggest that Ca2+-induced MPTP formation occurs in cardiac mitochondria of Cu-deficient rats only when cytochrome c oxidase activity falls below 30% of normal. Decreased respiratory complex activities caused by severe Cu deficiency may inhibit MPTP formation by increasing matrix ADP concentration or promoting oxidative modifications that reduce the sensitivity of the calcium trigger for MPTP formation.  相似文献   

16.
Mitochondrial bioenergetic function is often reported to decline with age and the accumulation of oxidative damage is thought to contribute. However, there are considerable uncertainties about the amount and significance of mitochondrial oxidative damage in aging. We hypothesized that, as radical production in mitochondria is greater than the rest of the cell, protein oxidative damage should accumulate more in mitochondria than the cytoplasm, and that this relative accumulation should increase with age. To test these hypotheses we measured the accumulation of three markers of protein oxidative damage in liver, brain, and heart from young and old rats. Ortho- and meta-tyrosine levels in protein hydrolysates were measured by a gas chromatography/mass spectrometry assay, and protein carbonyl content was determined by ELISA. Using these assays we found no evidence for increased protein oxidative damage in mitochondria relative to the cytosol. Most increases found in protein oxidative damage on aging were modest for all three tissues and there was no consistent pattern of increased oxidative damage in mitochondrial proteins on aging. Mitochondrial oxidative phosphorylation complex activities were also assessed revealing 39-42% decreases in F0F1--ATP synthase activity in liver and heart on aging, but not in other oxidative phosphorylation complexes. These findings have implications for the contribution of mitochondrial oxidative damage and dysfunction to aging.  相似文献   

17.
Immunohistochemical localization of cytochrome MC-P-448 (form of cytochrome P-450 induced by methylcholanthrene) in rat hepatic lobule and the changes in their distribution pattern in response to cold exposure at 4°C were investigated. The distribution of hepatocytes expressing immunoreactivity to cytochrome MC-P-448 was demonstrated with rabbit anti-MC-P-448 serum using a microphotomeasurement system P1 (Nikon). A duration of cold exposure for 1, 2, 3 or 4 weeks at 4°C was applied to study the effect of cold adaptation of cytochrome MC-P-448. In control rats housed at 24°C, hepatocytes showing high immunoreactivity to cytochrome MC-P-448 were located in the centrilobular areas of the hepatic lobules, whereas they disappeared markedly in the 4-week cold-exposed rats. In 1-week and 2-week cold-exposed rats, only a slight decrease in the expression of MC-P-448 positive hepatocytes was observed. These changes were clearly seen by visual inspection of the distribution topography as determined by a microphotomeasurement technique. In conclusion, cytochrome MC-P-448 forms which were predominantly located in centrilobular areas in the hepatic lobule decreased in 4-week cold-exposed rats. This was in contrast to our early report which showed an increasing tendency of cytochrome PB-P-450 forms in 4-week cold-exposed rats.  相似文献   

18.
We found opposite regulation of uncoupling protein 3 (UCP3) in slow-twitch soleus and fast-twitch gastrocnemius muscles of rats during cold exposure. Namely, the UCP3 mRNA level was downregulated in the soleus muscles, but upregulated in the gastrocnemius muscles after a 24-h cold exposure. In the analysis of UCP3 protein, we first succeeded in detecting UCP3 short-form as well as the long-form in vivo, which levels were decreased markedly in the cold-exposed soleus muscles. However, the levels of UCP3 and cytochrome oxidase subunit IV were well maintained in the cold-exposed gastrocnemius muscles with a rise in the total mitochondrial protein level, suggesting an increase of total oxidative ability. The fast-twitch muscle rather than the slow-twitch one may play an important role in adaptive responses, including thermogenesis under acute cold exposure.  相似文献   

19.
Cold temperatures have adverse effects on the human cardiovascular system. Endothelin (ET)-1 is a potent vasoconstrictor. We hypothesized that cold exposure increases ET-1 production and upregulates ET type A (ETA) receptors. The aim of this study was to determine the effect of cold exposure on regulation of the ET system. Four groups of rats (6-7 rats/group) were used: three groups were exposed to moderate cold (6.7 +/- 2 degrees C) for 1, 3, and 5 wk, respectively, and the remaining group was maintained at room temperature (25 degrees C) and served as control. Cold exposure significantly increased ET-1 levels in the heart, mesenteric arteries, renal cortex, and renal medulla. Cold exposure increased ETA receptor protein expression in the heart and renal cortex. ET type B (ETB) receptor expression, however, was decreased significantly in the heart and renal medulla of cold-exposed rats. Cold exposure significantly increased the ratio of ETA to ETB receptors in the heart. An additional four groups of rats (3 rats/group) were used to localize changes in ETA and ETB receptors at 1, 3, and 5 wk of cold exposure. Immunohistochemical analysis showed an increase in ETA, but a decrease in ETB, receptor immunoreactivity in cardiomyocytes of cold-exposed rats. Increased ETA receptor immunoreactivity was also found in vascular smooth muscle cells of cold-exposed rats. Cold exposure increased ETA receptor immunoreactivity in tubule epithelial cells in the renal cortex but decreased ETB receptor immunoreactivity in tubule epithelial cells in the renal medulla. Therefore, cold exposure increased ET-1 production, upregulated ETA receptors, and downregulated ETB receptors.  相似文献   

20.
In cold exposed rats, it is known that vitamin E induces an increase in the respiration of the whole mitochondrial population isolated from liver. To obtain information on the effects of cold exposure and vitamin E treatment on the dynamics of mitochondrial population, we determined characteristics of rat liver mitochondrial fractions, resolved at 1,000 (M1), 3,000 (M3), and 10,000 g (M10). We found that cold exposure increased the liver content of total mitochondrial proteins irrespective of vitamin E treatment. Conversely, protein distribution among the mitochondrial subpopulations was differentially affected by cold and antioxidant integration. In a cold environment, the M1 fraction, characterized by the highest O2 consumption and H2O2 production rates, underwent a remarkable protein content reduction, which was attenuated by vitamin E. These changes were dependent on the opposite effects of the two treatments on mitochondrial oxidative damage and susceptibility to swelling. The proteins of the other fractions, in which the above effects were lower, underwent smaller (M3) or no change (M10) in the treatment groups. The cold also led to an increase in O2 consumption of the M1 fraction which was accentuated by vitamin E treatment. This phenomenon and the vitamin-induced recovery of the M1 proteins supply an explanation of the previously reported increase in the respiration of the whole mitochondrial population induced by vitamin E in the liver from cold exposed rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号