首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mammalian synapse-associated protein SAP97, a structural and functional homolog of Drosophila Dlg, is a membrane-associated guanylate kinase (MAGUK) that is present at pre- and postsynaptic sites as well as in epithelial cell-cell contact sites. It is a multidomain scaffolding protein that shares with other members of the MAGUK protein family a characteristic modular organization composed of three sequential protein interaction motifs known as PDZ domains, followed by an Src homology 3 (SH3) domain, and an enzymatically inactive guanylate kinase (GK)-like domain. Specific binding partners are known for each domain, and different modes of intramolecular interactions have been proposed that particularly involve the SH3 and GK domains and the so-called HOOK region located between these two domains. We identified the HOOK region as a specific site for calmodulin binding and studied the dynamics of complex formation of recombinant calmodulin and SAP97 by surface plasmon resonance spectroscopy. Binding of various SAP97 deletion constructs to immobilized calmodulin was strictly calcium-dependent. From the rate constants of association and dissociation we determined an equilibrium dissociation constant K(d) of 122 nm for the association of calcium-saturated calmodulin and a SAP97 fragment, which encompassed the entire SH3-HOOK-GK module. Comparative structure-based sequence analysis of calmodulin binding regions from various target proteins predicts variable affinities for the interaction of calmodulin with members of the MAGUK protein family. Our findings suggest that calmodulin could regulate the intramolecular interaction between the SH3, HOOK, and GK domains of SAP97.  相似文献   

2.
Synapse-associated protein-97 (SAP97) is a membrane-associated guanylate kinase scaffolding protein expressed in cardiomyocytes. SAP97 has been shown to associate and modulate voltage-gated potassium (Kv) channel function. In contrast to Kv channels, little information is available on interactions involving SAP97 and inward rectifier potassium (Kir2.x) channels that underlie the classical inward rectifier current, IK1. To investigate the functional effects of silencing SAP97 on IK1 in adult rat ventricular myocytes, SAP97 was silenced using an adenoviral short hairpin RNA vector. Western blot analysis showed that SAP97 was silenced by ∼85% on day 3 post-infection. Immunostaining showed that Kir2.1 and Kir2.2 co-localize with SAP97. Co-immunoprecipitation (co-IP) results demonstrated that Kir2.x channels associate with SAP97. Voltage clamp experiments showed that silencing SAP97 reduced IK1 whole cell density by ∼55%. IK1 density at −100 mV was −1.45 ± 0.15 pA/picofarads (n = 6) in SAP97-silenced cells as compared with −3.03 ± 0.37 pA/picofarads (n = 5) in control cells. Unitary conductance properties of IK1 were unaffected by SAP97 silencing. The major mechanism for the reduction of IK1 density appears to be a decrease in Kir2.x channel abundance. Furthermore, SAP97 silencing impaired IK1 regulation by β1-adrenergic receptor (β1-AR) stimulation. In control, isoproterenol reduced IK1 amplitude by ∼75%, an effect that was blunted following SAP97 silencing. Our co-IP data show that β1-AR associates with SAP97 and Kir2.1 and also that Kir2.1 co-IPs with protein kinase A and β1-AR. SAP97 immunolocalizes with protein kinase A and β1-AR in the cardiac myocytes. Our results suggest that in cardiac myocytes SAP97 regulates surface expression of channels underlying IK1, as well as assembles a signaling complex involved in β1-AR regulation of IK1.  相似文献   

3.
The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the clustering of these proteins. Although the function of the NH2-terminal PDZ domains is relatively well characterized, the function of the Src homology 3 (SH3) domain and the guanylate kinase-like (GK) domain in the COOH-terminal half of PSD-95 has remained obscure. We now report the isolation of a novel synaptic protein, termed GKAP for guanylate kinase-associated protein, that binds directly to the GK domain of the four known members of the mammalian PSD-95 family. GKAP shows a unique domain structure and appears to be a major constituent of the postsynaptic density. GKAP colocalizes and coimmunoprecipitates with PSD-95 in vivo, and coclusters with PSD-95 and K+ channels/ NMDA receptors in heterologous cells. Given their apparent lack of guanylate kinase enzymatic activity, the fact that the GK domain can act as a site for protein– protein interaction has implications for the function of diverse GK-containing proteins (such as p55, ZO-1, and LIN-2/CASK).  相似文献   

4.
5.
Zhu J  Shang Y  Xia C  Wang W  Wen W  Zhang M 《The EMBO journal》2011,30(24):4986-4997
Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.  相似文献   

6.
Inward rectifier potassium (Kir) channels play important roles in the maintenance and control of cell excitability. Both intracellular trafficking and modulation of Kir channel activity are regulated by protein-protein interactions. We adopted a proteomics approach to identify proteins associated with Kir2 channels via the channel C-terminal PDZ binding motif. Detergent-solubilized rat brain and heart extracts were subjected to affinity chromatography using a Kir2.2 C-terminal matrix to purify channel-interacting proteins. Proteins were identified with multidimensional high pressure liquid chromatography coupled with electrospray ionization tandem mass spectrometry, N-terminal microsequencing, and immunoblotting with specific antibodies. We identified eight members of the MAGUK family of proteins (SAP97, PSD-95, Chapsyn-110, SAP102, CASK, Dlg2, Dlg3, and Pals2), two isoforms of Veli (Veli-1 and Veli-3), Mint1, and actin-binding LIM protein (abLIM) as Kir2.2-associated brain proteins. From heart extract purifications, SAP97, CASK, Veli-3, and Mint1 also were found to associate with Kir2 channels. Furthermore, we demonstrate for the first time that components of the dystrophin-associated protein complex, including alpha1-, beta1-, and beta2-syntrophin, dystrophin, and dystrobrevin, interact with Kir2 channels, as demonstrated by immunoaffinity purification and affinity chromatography from skeletal and cardiac muscle and brain. Affinity pull-down experiments revealed that Kir2.1, Kir2.2, Kir2.3, and Kir4.1 all bind to scaffolding proteins but with different affinities for the dystrophin-associated protein complex and SAP97, CASK, and Veli. Immunofluorescent localization studies demonstrated that Kir2.2 co-localizes with syntrophin, dystrophin, and dystrobrevin at skeletal muscle neuromuscular junctions. These results suggest that Kir2 channels associate with protein complexes that may be important to target and traffic channels to specific subcellular locations, as well as anchor and stabilize channels in the plasma membrane.  相似文献   

7.
Mechanisms of ion channel clustering by cytoplasmic membrane-associated guanylate kinases such as postsynaptic density 95 (PSD-95) and synapse-associated protein 97 (SAP97) are poorly understood. Here, we investigated the interaction of PSD-95 and SAP97 with voltage-gated or Kv K(+) channels. Using Kv channels with different surface expression properties, we found that clustering by PSD-95 depended on channel cell surface expression. Moreover, PSD-95-induced clusters of Kv1 K(+) channels were present on the cell surface. This was most dramatically demonstrated for Kv1.2 K(+) channels, where surface expression and clustering by PSD-95 were coincidentally promoted by coexpression with cytoplasmic Kvbeta subunits. Consistent with a mechanism of plasma membrane channel-PSD-95 binding, coexpression with PSD-95 did not affect the intrinsic surface expression characteristics of the different Kv channels. In contrast, the interaction of Kv1 channels with SAP97 was independent of Kv1 surface expression, occurred intracellularly, and prevented further biosynthetic trafficking of Kv1 channels. As such, SAP97 binding caused an intracellular accumulation of each Kv1 channel tested, through the accretion of SAP97 channel clusters in large (3-5 microm) ER-derived intracellular membrane vesicles. Together, these data show that ion channel clustering by PSD-95 and SAP97 occurs by distinct mechanisms, and suggests that these channel-clustering proteins may play diverse roles in regulating the abundance and distribution of channels at synapses and other neuronal membrane specializations.  相似文献   

8.
The functional localization of potassium inward rectifiers is regulated by SAP97, a PDZ membrane-associated guanylate kinase protein. We describe here an investigation of the conformation of the PDZ domain region of SAP97 PDZ1-3. The NMR and SAXS data reveal conformational dynamics. The NMR data show minimal interdomain contacts, with the U3 linker region between PDZ2 and PDZ3 being largely unstructured. Shape analysis of the SAXS profiles revealed a dumbbell for the PDZ12 double domain. An overall elongated, asymmetric shape comprised of two to three distinct components characterizes the triple domain PDZ1-3. In addition, rigid body modeling shows that the representative average shape does not provide the full picture and that the data for the triple domain are consistent with large variations, suggesting significant conformational flexibility. However, the dynamics appears to be restricted as PDZ3 is located essentially within approximately 40 A from PDZ12. We also show that the Kir2.1 cytoplasmic domain interacts with all three PDZ domains but with a clear preference for PDZ2 even in the presence of the U3 region. We speculate that the restricted dynamics and preferential Kir2.1 binding to PDZ2 are features that enable SAP97 to function as a scaffold protein, allowing other proteins each to bind to the other two PDZ domains in sufficient proximity to yield productive channelosomes.  相似文献   

9.
Multiprotein complexes mediate static and dynamic functions to establish and maintain cell polarity in both epithelial cells and neurons. Membrane-associated guanylate kinase (MAGUK) proteins are thought to be scaffolding molecules in these processes and bind multiple proteins via their obligate postsynaptic density (PSD)-95/Disc Large/Zona Occludens-1, Src homology 3, and guanylate kinase-like domains. Subsets of MAGUK proteins have additional protein-protein interaction domains. An additional domain we identified in SAP97 called the MAGUK recruitment (MRE) domain binds the LIN-2,7 amino-terminal (L27N) domain of mLIN-2/CASK, a MAGUK known to bind mLIN-7. Here we show that SAP97 binds two other mLIN-7 binding MAGUK proteins. One of these MAGUK proteins, DLG3, coimmunoprecipitates with SAP97 in lysates from rat brain and transfected Madin-Darby canine kidney cells. This interaction requires the MRE domain of SAP97 and surprisingly, both the L27N and L27 carboxyl-terminal (L27C) domains of DLG3. We also demonstrate that SAP97 can interact with the MAGUK protein, DLG2, but not the highly related protein, PALS2. The ability of SAP97 to interact with multiple MAGUK proteins is likely to be important for the targeting of specific protein complexes in polarized cells.  相似文献   

10.
Strong inward rectifier potassium (Kir2) channels are important in the control of cell excitability, and their functions are modulated by interactions with intracellular proteins. Here we identified a complex of scaffolding/trafficking proteins in brain that associate with Kir2.1, Kir2.2, and Kir2.3 channels. By using a combination of affinity interaction pulldown assays and co-immunoprecipitations from brain and transfected cells, we demonstrated that a complex composed of SAP97, CASK, Veli, and Mint1 associates with Kir2 channels via the C-terminal PDZ-binding motif. We further demonstrated by using in vitro protein interaction assays that SAP97, Veli-1, or Veli-3 binds directly to the Kir2.2 C terminus and recruits CASK. Co-immunoprecipitations indicated that specific Veli isoforms participate in forming distinct protein complexes in brain, where Veli-1 stably associates with CASK and SAP97, Veli-2 associates with CASK and Mint1, and Veli-3 associates with CASK, SAP97, and Mint1. Additionally, immunocytochemistry of rat cerebellum revealed overlapping expression of Kir2.2, SAP97, CASK, Mint1, with Veli-1 in the granule cell layer and Veli-3 in the molecular layer. We propose a model whereby Kir2.2 associates with distinct SAP97-CASK-Veli-Mint1 complexes. In one complex, SAP97 interacts directly with the Kir2 channels and recruits CASK, Veli, and Mint1. Alternatively, Veli-1 or Veli-3 interacts directly with the Kir2 channels and recruits CASK and SAP97; association of Mint1 with the complex requires Veli-3. Expression of Kir2.2 in polarized epithelial cells resulted in targeting of the channels to the basolateral membrane and co-localization with SAP97 and CASK, whereas a dominant interfering form of CASK caused the channels to mislocalize. Therefore, CASK appears to be a central protein of a macromolecular complex that participates in trafficking and plasma membrane localization of Kir2 channels.  相似文献   

11.
Inward rectifier K(+) (Kir) channels are activated by phosphatidylinositol-(4,5)-bisphosphate (PIP(2)), but G protein-gated Kir (K(G)) channels further require either G protein βγ subunits (Gβγ) or intracellular Na(+) for their activation. To reveal the mechanism(s) underlying this regulation, we compared the crystal structures of the cytoplasmic domain of K(G) channel subunit Kir3.2 obtained in the presence and the absence of Na(+). The Na(+)-free Kir3.2, but not the Na(+)-plus Kir3.2, possessed an ionic bond connecting the N terminus and the CD loop of the C terminus. Functional analyses revealed that the ionic bond between His-69 on the N terminus and Asp-228 on the CD loop, which are known to be critically involved in Gβγ- and Na(+)-dependent activation, lowered PIP(2) sensitivity. The conservation of these residues within the K(G) channel family indicates that the ionic bond is a character that maintains the channels in a closed state by controlling the PIP(2) sensitivity.  相似文献   

12.
Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization of Kv1.5 subunits in cardiac myocytes. Recombinant SAP97 or Kv1.5 subunits tagged with green fluorescent protein (GFP) were overexpressed in rat neonatal cardiac myocytes and in Chinese hamster ovary (CHO) cells from adenoviral or plasmidic vectors. Immunocytochemistry, fluorescence recovery after photobleaching, and patch-clamp techniques were used to study the effects of SAP97 on the localization, mobility, and function of Kv1.5 subunits. Adenovirus-mediated SAP97 overexpression in cardiac myocytes resulted in the clustering of endogenous Kv1.5 subunits at myocyte-myocyte contacts and an increase in both the maintained component of the outward K(+) current, I(Kur) (5.64 +/- 0.57 pA/pF in SAP97 myocytes vs. 3.23 +/- 0.43 pA/pF in controls) and the number of 4-aminopyridine-sensitive potassium channels in cell-attached membrane patches. In live myocytes, GFP-Kv1.5 subunits were mobile and organized in clusters at the basal plasma membrane, whereas SAP97 overexpression reduced their mobility. In CHO cells, Kv1.5 channels were diffusely distributed throughout the cell body and freely mobile. When coexpressed with SAP97, Kv subunits were organized in plaquelike clusters and poorly mobile. In conclusion, SAP97 regulates the K(+) current in cardiac myocytes by retaining and immobilizing Kv1.5 subunits in the plasma membrane. This new regulatory mechanism may contribute to the targeting of Kv channels in cardiac myocytes.  相似文献   

13.
The protein-tyrosine kinase Pyk2/CAKbeta/CADTK is a key activator of Src in many cells. At hippocampal synapses, induction of long term potentiation requires the Pyk2/Src signaling pathway, which up-regulates the activity of N-methyl-d-aspartate-type glutamate receptors. Because localization of protein kinases close to their substrates is crucial for effective phosphorylation, we investigated how Pyk2 might be recruited to the N-methyl-d-aspartate receptor complex. This interaction is mediated by PSD-95 and its homolog SAP102. Both proteins colocalize with Pyk2 at postsynaptic dendritic spines in the cerebral cortex. The proline-rich regions in the C-terminal half of Pyk2 bind to the SH3 domain of PSD-95 and SAP102. The SH3 and guanylate kinase homology (GK) domain of PSD-95 and SAP102 interact intramolecularly, but the physiological significance of this interaction has been unclear. We show that Pyk2 effectively binds to the Src homology 3 (SH3) domain of SAP102 only when the GK domain is removed from the SH3 domain. Characterization of PSD-95 and SAP102 as adaptor proteins for Pyk2 fills a critical gap in the understanding of the spatial organization of the Pyk2-Src signaling pathway at the postsynaptic site and reveals a physiological function of the intramolecular SH3-GK domain interaction in SAP102.  相似文献   

14.
Effector molecules such as calmodulin modulate the interactions of membrane-associated guanylate kinase homologs (MAGUKs) and other scaffolding proteins of the membrane cytoskeleton by binding to the Src homology 3 (SH3) domain, the guanylate kinase (GK) domain, or the connecting HOOK region of MAGUKs. Using surface plasmon resonance, we studied the interaction of members of all four MAGUK subfamilies--synapse-associated protein 97 (SAP97), calcium/calmodulin-dependent serine protein kinase (CASK), membrane palmitoylated protein 2 (MPP2), and zona occludens (ZO) 1--and calmodulin to determine interaction affinities and localize the binding site. The SH3-GK domains of the proteins and derivatives thereof were expressed in E. coli and purified. In all four proteins, high-affinity calmodulin binding was identified. CASK was shown to contain a Ca2+-dependent calmodulin binding site within the HOOK region, overlapping with a protein 4.1 binding site. In ZO1, a Ca2+-dependent calmodulin binding site was detected within the GK domain. The equilibrium dissociation constants for MAGUK-calmodulin interaction were found to range from 50 nM to 180 nM. Sequence analyses suggest that binding sites for calmodulin have evolved independently in at least three subfamilies. For ZO1, pulldown of GST-calmodulin was shown to occur in a calcium-dependent manner; moreover, molecular modeling and sequence analyses predict conserved basic residues to be exposed on one side of a helix. Thus, calmodulin binding appears to be a common feature of MAGUKs, and Ca2+-activated calmodulin may serve as a general regulator to affect the interactions of MAGUKs and various components of the cytoskeleton.  相似文献   

15.
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.  相似文献   

16.
The synaptic scaffolding molecule (S-SCAM) has been identified as a protein interacting with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/hDLG-associated protein). S-SCAM has six PDZ (we have numbered them PDZ-0 to -5), two WW, and one guanylate kinase (GK) domains and interacts with N-methyl-D-aspartate (NMDA) receptor via PDZ-5 and SAPAP via the GK domain. We have identified here shorter isoforms of S-SCAM that start at the 164th or 224th methionine, and we renamed the original one, S-SCAMalpha, the middle one, S-SCAMbeta, and the shortest one, S-SCAM-gamma. S-SCAMbeta and -gamma have five PDZ (PDZ-1 to -5), two WW, and one GK domains. S-SCAMalpha interacted with S-SCAMbeta and -gamma through the region containing PDZ-4 and -5. The region containing both of PDZ-4 and -5 is sufficient for the clustering of NMDA receptors and forms a dimer in gel filtration, suggesting that S-SCAM forms multimers via the interaction between the C-terminal PDZ domains and assembles NMDA receptors into clusters. S-SCAMbeta and -gamma also interacted with SAPAP, suggesting that the N-terminal region of the GK domain is not necessary for the interaction. Finally, we have identified the interaction of the PDZ domains of S-SCAM with the GK domain of PSD-95/SAP90. S-SCAM, PSD-95/SAP90, and SAPAP are colocalized at least in some part in brain. Therefore, S-SCAM, PSD-95/SAP90, and SAPAP may form a complex in vivo.  相似文献   

17.
Mao P  Tao YX  Fukaya M  Tao F  Li D  Watanabe M  Johns RA 《IUBMB life》2008,60(10):684-692
Membrane-associated guanylate kinases (MAGUKs) act as scaffolds to coordinate signaling events through their multiple domains at the plasma membrane. The MAGUK SH3 domain is noncanonical and its function remains unclear. To identify potential binding partners of MAGUK SH3, the synapse-associated protein 102 (SAP102) SH3 domain was used as bait in a yeast two-hybrid screen of a mouse embryonic cDNA library. A mouse homologue of the Drosophila discs large tumor suppressor (Dlg, also known as SAP97) bound preferentially to SAP102 SH3. The 4347bp cDNA sequence encoded an 893 amino acid protein with 94% identity to mouse SAP97. A deleted region (33-aa) strongly suggests this is a novel splice variant, which we call Embryonic-dlg/SAP97 (E-dlg). The interaction of SAP102 and E-dlg was confirmed in mammalian cells. E-dlg can also bind to potassium channel Kv1.4 in a pull-down assay. E-dlg was highly expressed in embryonic and some adult mouse tissues, such as brain, kidney, and ovary. Furthermore, in situ hybridization showed that E-dlg was mostly expressed in olfactory bulb and cerebellum.  相似文献   

18.
G protein-activated inwardly rectifying potassium (GIRK or Kir3) channels are directly gated by the βγ subunits of G proteins and contribute to inhibitory neurotransmitter signaling pathways. Paradoxically, volatile anesthetics such as halothane inhibit these channels. We find that neuronal Kir3 currents are highly sensitive to inhibition by halothane. Given that Kir3 currents result from increased Gβγ available to the channels, we asked whether reducing available Gβγ to the channel would adversely affect halothane inhibition. Remarkably, scavenging Gβγ using the C-terminal domain of β-adrenergic receptor kinase (cβARK) resulted in channel activation by halothane. Consistent with this effect, channel mutants that impair Gβγ activation were also activated by halothane. A single residue, phenylalanine 192, occupies the putative Gβγ gate of neuronal Kir3.2 channels. Mutation of Phe-192 at the gate to other residues rendered the channel non-responsive, either activated or inhibited by halothane. These data indicated that halothane predominantly interferes with Gβγ-mediated Kir3 currents, such as those functioning during inhibitory synaptic activity. Our report identifies the molecular correlate for anesthetic inhibition of Kir3 channels and highlights the significance of these effects in modulating neurotransmitter-mediated inhibitory signaling.  相似文献   

19.
In neuronal and atrial tissue, G protein-gated inwardly rectifying K(+) channels (Kir3.x family) are responsible for mediating inhibitory postsynaptic potentials and slowing the heart rate. They are activated by Gbetagamma dimers released in response to the stimulation of receptors coupled to inhibitory G proteins of the G(i/o) family but not receptors coupled to the stimulatory G protein G(s). We have used biochemical, electrophysiological, and molecular biology techniques to examine this specificity of channel activation. In this study we have succeeded in reconstituting such specificity in an heterologous expression system stably expressing a cloned counterpart of the neuronal channel (Kir3.1 and Kir3.2A heteromultimers). The use of pertussis toxin-resistant G protein alpha subunits and chimeras between G(i1) and G(s) indicate a central role for the G protein alpha subunits in determining receptor specificity of coupling to, but not activation of, G protein-gated inwardly rectifying K(+) channels.  相似文献   

20.
PSD-95/SAP90 is a member of the MAGUK superfamily. In excitatory synapses, PSD-95 clusters receptors and ion channels at specific sites in the postsynaptic membrane and organizes downstream signaling and cytoskeletal molecules. We have determined the crystal structures of the apo and GMP-bound forms to 2.3 and 2.0 A resolutions, respectively, of a fragment containing the SH3, HOOK, and guanylate kinase (GK) domains of PSD-95. We observe an intramolecular interaction between the SH3 and GK domains involving the formation of a beta sheet including residues N- and C-terminal to the GK domain. Based on amino acid conservation and mutational data available in the literature, we propose that this intramolecular interaction is a common feature among MAGUK proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号