首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the in vitro effect of VIP and histamine on ultrastructure of the parietal cells in isolated guinea pig fundic glands. The morphological changes induced by histamine in the parietal cells can be compared to those observed after histamine stimulation in vivo or in vitro on gastric mucosa preparations. In contrast, VIP incubation did not produce the ultrastructural changes related to gastric acid secretion, in resting parietal cells. Pretreatment of the glands by VIP resulted in a remarkable suppression of the histamine effect, since the parietal cells assumed an almost resting state. The data (1) indicate that the parietal cells in isolated gastric glands of the guinea pig retain in vitro the capacity to undergo the ultrastructural changes that are related to acid secretion in vivo after histamine or cAMP and (2) suggest that VIP is an inhibitor of histamine-induced gastric acid secretion in the guinea pig. It is proposed that VIP could act directly on the parietal cell via cAMP-phosphodiesterase activation, or indirectly via gastric somatostatin and/or prostaglandin secretions, inhibiting the H2 receptor-cAMP system of the parietal cell.  相似文献   

2.
Effect of low body temperature on gastric secretory activity in the guinea pig under urethane general anaesthesia. Acta Physiol. Pol., 1978, 29 (1): 61-66. The effect of low body temperature on spontaneous and histamine (H) stimulated or Nalpha Nalpha-dimethylhistamine (NDMH)-stimulated gastric secretion was investigated in the guinea pig under general anaesthesia with urethane. In normothermia NDMH had a stronger stimulatory action on acid secretion In hypothermia (30 degrees C and 25 degrees C) only NDMH showed some stimulating effect. The obtained results point to the necessity of strict controlling of body temperature in the experiments performed on animals under general anaesthesia and suggest that the lack of effect at low temperature may be connected with an inhibition of the processes of H side-chain methylation when the rate of metabolic processes in the organism has fallen.  相似文献   

3.
Gastric acid secretion is regulated by three primary components that activate the parietal cell: histamine, gastrin, and acetylcholine (ACh). Although much is known about these regulatory components individually, little is known on the interplay of these multiple activators and the degree of regulation they pose on the gastric acid secretion mechanism. We utilized a novel dual-sensing approach, where an iridium oxide sensor was used to monitor pH and a boron-doped diamond electrode was used for the detection of histamine from in vitro guinea pig stomach mucosal sections. Under basal conditions, gastrin was shown to be the main regulatory component of the total acid secretion and directly activated the parietal cell rather than by mediating gastric acid secretion through the release of histamine from the enterochromaffin-like cell, although both pathways were active. Under stimulated conditions with ACh, the gastrin and histamine components of the total acid secretion were not altered compared with levels observed under basal conditions, suggestive that ACh had no direct effect on the enterochromaffin-like cell and G cell. These data identify a new unique approach to investigate the regulation pathways active during acid secretion and the degree that they are utilized to drive total gastric acid secretion. The findings of this study will enhance our understanding on how these signaling mechanisms vary under pathophysiology or therapeutic management.  相似文献   

4.
Histamine plays important roles in gastric acid secretion, inflammation, and allergic response. Histamine N-methyltransferase (HMT; EC 2.1.1.8) is crucial to the inactivation of histamine in tissues. In this study we investigated the immunohistochemical localization of this enzyme in guinea pig tissues using a rabbit polyclonal antibody against bovine HMT. The specificity of the antibody for guinea pig HMT was confirmed by Western blotting and the lack of any staining using antiserum preabsorbed with purified HMT. There was strong HMT-like immunoreactivity (HMT-LI) in the epithelial cells in the gastrointestinal tract, especially in the gastric body, duodenum, and jejunum. The columnar epithelium in the gallbladder was also strongly positive. Almost all the myenteric plexus from the stomach to the colon was stained whereas the submucous plexus was not. Other strongly immunoreactive cells included the ciliated cells in the trachea and the transitional epithelium of the bladder. Intermediately immunoreactive cells included islets of Langerhans, epidermal cells of the skin, alveolar cells in the lung, urinary tubules in the kidney, and epithelium of semiferous tubules. HMT-LI was present in specific structures in the guinea pig tissues. The widespread distribution of HMT-LI suggests that histamine has several roles in different tissues.  相似文献   

5.
In isolated guinea pig gastric mucous and enriched parietal cells it was tested whether or not cyclic AMP in response to histamine stimulation might reach concentrations sufficiently high to activate an intracellular cyclic AMP-dependent protein kinase and thereby mediate the acid response. Although histamine stimulated parietal cell adenylate cyclase to a greater extent than mucous cell adenylate cyclase, cyclic AMP levels in response to maximal histamine stimulation reached higher levels in mucous than in parietal cells. This had to be attributed to a five times higher phosphodiesterase activity in parietal cell than in mucous cell populations. In the absence of the phosphodiesterase inhibitor isobutylmethylxanthine exposure of the cells to histamine only in mucous cells produced an increase in cyclic AMP-dependent protein kinase activity ratio, but not in parietal cells. Dibutyryl-cyclic AMP induced cyclic AMP accumulation in parietal cell populations was compared to dibutyryl-cyclic AMP induced H+ secretion, as measured by 14C-aminopyrine uptake. A maximal acid response was associated with an intracellular cyclic AMP level of approximately 300 pmol/10(6) cells, which was never reached by maximal histamine stimulation even not in the presence of the phosphodiesterase inhibitor. It is concluded that activation of the parietal cell cyclic AMP-dependent protein kinase is one way for stimulating H+ secretion, but that the acid response elicited by histamine requires another intracellular pathway.  相似文献   

6.
Secretion from the gastric gland involves the activation of various types of cells in a coordinated manner. In order to elucidate the mechanisms underlying the coordination of secretion, we studied live fluorescence images of guinea pig gastric glands stained with acridine orange (AO). On 2 μM AO staining, individual cells were characterized by metachromatic colors and various intensities of fluorescence. When the gland was stimulated with 100 μM of histamine, green fluorescence was transiently increased in parietal cells and intermediate cells and propagated along the gland for a long distance over many cells. Local stimulation in a couple of cells with histamine in the presence of suramin also induced propagation. However, the fluorescence response was suppressed by the addition of H-89, a protein kinase A inhibitor. These findings suggest that a cAMP-dependent signal propagates intercellularly through a variety of cells to induce coordinated secretion in the entire gastric gland.  相似文献   

7.
The influence of adenosine 5'-triphosphate on gastric acid secretion stimulated by histamine, carbachol, dibutyryl-cAMP and the phosphodiesterase inhibitors 8-phenyl-theophylline and rolipram in isolated rabbit gastric glands was studied. Changes oi gastric acid secretion were measured by the aminopyrine accumulation method. Histamine-stimulated acid secretion was significantly inhibited by ATP 1 mM, whereas the secretory responses elicited by carbachol, dibutyryl-cAMP, 8-phenyl-theophylline or rolipram were not. Assays with indomethacin, a well known prostaglandin synthesis inhibitor, showed that this agent significantly reduced the inhibitory effect of ATP on histamine responses. The results indicate that the antisecretory effect of ATP was specific for histamine and that it was mediated, at least in part, via stimulation of endogenous prostaglandin production.  相似文献   

8.
The gastric enterochromaffin-like cell (ECL) has been studied in gastric fundic glands by confocal microscopy and as a purified cell preparation by video imaging of calcium signaling and measurements of histamine release. Regulation of gastric acid secretion is largely due to alterations of histamine activation of the H2 receptor on the parietal cell and can be divided into central neural regulation, with direct actions of neuronally released mediators and into peripheral regulation by substances released from other endocrine cells. Gastric neuronal stimulation of acid secretion by alteration of ECL cell function is probably mediated by pituitary adenylate cyclase activating peptide (PACAP) receptors on the ECL cell, which activate calcium signaling and histamine release. Peripheral stimulation of acid secretion via the ECL cell is largely mediated by gastrin stimulation of calcium signaling and histamine release. Gastric neuronal inhibition of ECL cell function is probably mediated by galanin inhibition of calcium signaling, and histamine release and peripheral inhibition of ECL cell function is mainly due to somatostatin release from D cells.  相似文献   

9.
Porcine ileal polypeptide, an enterooxyntin isolated from distal small intestinal mucosal epithelium, has been observed to stimulate gastric acid secretion in vivo as well as in vitro (Wider, M.D. et al. (1984) Endocrinology 115, 1484-1491, Wider M.D. et al. (1986) Endocrinology 118, 1546-1550). We report here that porcine ileal polypeptide stimulates both acid (aminopyrine accumulation) and pepsinogen secretion in isolated, enriched populations of guinea pig parietal and chief cells in a dose-dependent manner. Further, 10(-9) M porcine ileal polypeptide caused an increase in cytoplasmic Ca2+ concentration in both parietal and chief cells similar in magnitude to that observed with gastrin-17 (10(-8) M) (as measured by both fura-2 and aequorin) and cholecystokinin octapeptide (CCK-OP) (10(-8) M), respectively. Porcine ileal polypeptide has been observed to cause no stimulation of cAMP production in gastric glands from guinea pigs (Gespach, C., personal communication) nor is there any effect of medium Ca2+ depletion on acid production observed with guinea pig gastric mucosal sections. It is concluded that porcine ileal polypeptide, at concentrations similar to circulating levels observed in plasma of normal pigs (5 x 10(-9) M), acts directly on the parietal and chief cells to cause the mobilization of intracellular Ca2+ from the stores resulting in acid and pepsinogen secretion. These experiments demonstrate that this peptide is a potent enterooxyntin and chief cell secretagogue which acts via the same signal transduction mechanisms as gastrin and cholecystokinin.  相似文献   

10.
Nociceptin/orphanin FQ (N/OFQ) administered into the lateral left cerebral ventricle of rats has been reported to inhibit in vivo gut motor and secretory functions. Recently, a novel N/OFQ analog, [Arg14, Lys15] N/OFQ, was synthesized and demonstrated to behave as a highly potent agonist at the human recombinant N/OFQ peptide (NOP) receptors and to produce long-lasting effects in vivo in mice compared with the natural ligand N/OFQ. In the present study, the pharmacological profile of [Arg14, Lys15] N/OFQ was further evaluated and compared with that of N/OFQ in vitro on guinea pig exocrine pancreas and in vivo on gastric emptying, colonic propulsion and gastric acid secretion in rats. [Arg14, Lys15] N/OFQ and N/OFQ significantly decreased the KCl-evoked amylase secretion from isolated pancreatic lobules of the guinea pig. In in vivo experiments, [Arg14, Lys15] N/OFQ mimicked the effects of N/OFQ, inducing, after intracerebroventricular injection, a delay (up to 70%) in the gastric emptying of a phenol red meal, an increase (about 40 times) of the mean bead colonic expulsion time and a decrease (up to 90%) of gastric acid secretion in water loaded rats after 90 min pylorus ligature. In all these assays, [Arg14, Lys15] N/OFQ was more effective than N/OFQ, and its effective doses were at least 10-fold lower than N/OFQ effective doses. The highly selective NOP receptor antagonist, UFP-101, decreased the efficacy of [Arg14, Lys15] N/OFQ in in vitro and in vivo assays above reported. These findings: (a) show that pancreatic NOP receptors mediate an in vitro inhibitory effect on stimulated guinea pig amylase secretion; (b) confirm that the stimulation of central NOP receptors exerts an inhibitory control on gastric emptying, colonic motility and gastric secretion in rats and (c) put in evidence that [Arg14, Lys15] N/OFQ, being more potent and effective than the natural ligand N/OFQ, represents a new pharmacological tool for the study of the physiological and pharmacological roles mediated by the N/OFQ-NOP receptor system.  相似文献   

11.
The gastric parietal cell is responsible for the secretion of HCl into the lumen of the stomach mainly due to stimulation by histamine via the cAMP pathway. However, the participation of several other receptors and pathways have been discovered to influence both stimulation and inhibition of acid secretion (e.g., cholinergic). Here we examine the role of phosphoinositide 3-kinase (PI3K) in the modulation of acid secretion. Treatment of isolated gastric glands and parietal cells with the PI3K inhibitor, LY294002 (LY), potentiated acid secretion in response to histamine to nearly the maximal secretion obtained with histamine plus phosphodiesterase inhibitors. As cAMP levels were elevated in response to histamine plus LY, but other means of elevating cAMP (e.g., forskolin, dbcAMP) were not influenced by LY, we posited that the effect might require activation of G-protein-coupled histamine H(2) receptors, possibly through the protein kinase B pathway (also known as Akt). Study of downstream effectors of PI3K showed that histaminergic stimulation increased Akt phosphorylation, which in turn was blocked by inhibition of PI3K. Expression studies showed that high expression of active Akt decreased acid secretion, whereas dominant-negative Akt increased acid secretion. Taken together, these data suggest stimulation with histamine increases the activity of PI3K leading to increased activity of Akt and decreased levels of cAMP in the parietal cell.  相似文献   

12.
Acetorphan is an inhibitor of "enkephalinase" (EC 3.4.24.11) which has been shown to reduce in vivo and in vitro the degradation of enkephalins and other peptides. The effects of acetorphan on gastric secretion were studied in cats fitted with gastric fistulae and Heidenhain pouches. Acetorphan inhibited by 40-60% the acid secretion from the gastric fistulae after stimulation by submaximal doses of pentagastrin, histamine and 2 deoxy-D-glucose. These inhibitions were reduced or suppressed by naloxone. The meal-stimulated secretion from the fistulae was not changed after acetorphan. Acetorphan slightly and progressively reduced the pentagastrin-stimulated acid output from the Heidenhain pouches, and this effect was naloxone resistant. No change was found in the secretion from Heidenhain pouches under histamine stimulation, while meal-induced secretion of the pouches was increased by acetorphan, and this increase was not prevented by naloxone. Endogenous opioids probably exert an inhibitory regulatory control upon the gastric secretion of cats. In addition, non-opioid factors may be involved in the effect of acetorphan on meal-stimulated secretion.  相似文献   

13.
Gastric glands incubated in hyposmotic medium (200 mOsm) accumulated aminopyrine, a measure of acid secretion, to the same extent as that of paired glands in isomotic medium containing histamine (10(-4) M). These maximal responses to hyposmolality and histamine were not additive. The hyposmotic response peaked earlier than the histamine response. Hyposmotic stimulation was nearly abolished by preincubation of the glands with metiamide and cimetidine, H-2 histamine antagonists. In the presence of histaminase, no hyposmotic stimulation occurred. The response to forskolin, a stimulant of adenylate cyclase, was equivalent in hyposmotic and isosmotic media. These results indicate that hyposmolality releases histamine from a paracrine cell in the gastric gland and that histamine binds to H-2 receptors on the parietal cell to initiate a cyclic AMP-mediated stimulation of acid secretion.  相似文献   

14.
The role of gastrin, acetylcholine and histamine in the acid response to central vagal activation induced by intracisternal injection of the stable analog, RX 77368, was further investigated in urethane-anesthetized rats with gastric fistula. The gastrin monoclonal antibody 28-2 injected intravenously, at a dose previously shown to prevent gastrin-induced stimulation of acid secretion, did not alter the peak acid response to intracisternal injection of RX 77368 (15 ng). The TRH analog (30 ng) injected into the cisterna magna increased levels of histamine measured in the hepatic portal blood. Cimetidine administered at a dose which completely blocked the stimulation of gastric acid secretion produced by intravenous infusion of histamine, inhibited by 62% the stimulatory effect of intracisternal RX 77368 (30 ng). The M1 muscarinic antagonist, pirenzepine, completely prevented the acid secretion induced by intracisternal RX 77368 (30 ng). These results indicate that the acid response to central vagal activation by the TRH analog in rats involved M1 muscarinic receptors along with histamine release acting on H2 histaminergic receptors whereas gastrin does not appear to play an important role.  相似文献   

15.
Does gastrin stimulate gastric acid secretion by direct action on oxyntic cells, by releasing histamine, or by being potentiated by histamine? Previous studies in the mouse pointed to gastrin-regulated histamine release. Guinea pig and rat are well known to vary in their sensitivity to histamine. Therefore, the effects of histamine and pentagastrin were compared quantitatively on isolated, lumen-perfused, stomach preparations from these species in the absence and presence of histamine H2-receptor blockade. The loss of potency of histamine in the rat was mirrored by a loss of potency of pentagastrin consistent with the idea that pentagastrin acts by releasing histamine. In the rat, a well-defined pentagastrin curve was obtained in the presence of histamine H2-receptor block as though pentagastrin acts both directly on the oxyntic cell and indirectly by releasing histamine. It was not necessary to invoke a potentiating interaction between histamine and pentagastrin at the oxyntic cell; the two effects appeared simply to add. Potentiation was observed, however, between other combinations of stimuli, for example, between vagal nerve and pentagastrin stimulation. The physiological consequences of these results are discussed.  相似文献   

16.
Results of several experiments have suggested that histamine-2 receptors play an inhibitory role in regulating gastrin release. We evaluated this prospectively in healthy human beings by infusing intravenously either histamine (0.33 μg/kg/min) or cimetidine (3.33 mg/min) during a continuous 3-h intragastric infusion of a 3% mixed amino acid meal, a potent stimulus of gastrin release. In order to be certain that effects of histamine or cimetidine on gastrin release were independent of their known effects on gastric acid secretion, intragastric pH was maintained at 5.0 by in vivo intragastric titration with sodium bicarbonate or hydrochloric acid. Although histamine and cimetidine had significant effects on gastric acid secretion, neither significantly affected the rises in serum gastrin concentrations during intragastric amino acid infusion. For example, mean gastrin rises above basal concentrations were 39 ± 9 pg/ml on the control day, 39 ± 9 pg/ml on the histamine day and 44 ± 11 pg/ml on the cimetidine day (P > 0.05). Thus, blockade or stimulation of H2-receptors at the doses tested had no effect on gastrin release in response to an amino acid meal in humans when intragastric pH was maintained at 5.0.  相似文献   

17.
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.  相似文献   

18.
Acid secretory activity and respiration in rabbit gastric glands are stimulated by cAMP-dependent and -independent agonists. Potentiation between agonists suggests interaction of the activation pathways. Regulation of secretory response by protein kinase C was investigated with 12-0-tetradecanoyl phorbol-13-acetate (TPA). TPA elevated basal respiration, pepsin release, and acid secretion but inhibited histamine and carbachol stimulation of acid secretion by gastric glands, as measured by [dimethylamino-14C]aminopyrine accumulation. The inhibition of histamine response was specific for protein kinase C activators, occurred after a 20-min lag, and was not reversed by removal of TPA after 3 min of preincubation. TPA pretreatment inhibited acid secretory responses to cholera toxin and forskolin but enhanced the response to cAMP analogues. Cholera toxin and pertussis toxin simulated ADP-ribosylation of 45 and 41 kDa proteins, respectively, in parietal cell membranes. Therefore, both stimulatory (Gs) and inhibitory (Gi) GTP binding proteins of adenylyl cyclase appear to be present in parietal cells. Pretreatment with pertussis toxin attenuated PGE2 but not TPA inhibition of histamine stimulation of aminopyrine accumulation. Thus, the inhibitory effect of TPA does not appear to be associated with an action on Gi. The results with histamine and carbachol suggest that protein kinase C may regulate both cAMP-dependent and -independent stimulation of parietal cell acid secretion.  相似文献   

19.
Metiamide, an antagonist of histamine H2 receptors, was administered intravenously to normal subjects and to patients with a peptic ulcer during vagal stimulation with a constant infusion of insulin. In normal and peptic-ulcer subjects there were reductions of 70% and 71% respectively in gastric-acid output compared with control tests on the same subjects. The decreased acid output resulted from a reduction in both volume of secretion and acid concentration. Metiamide is therefore a potent inhibitor of vagally-induced gastric acid secretion.  相似文献   

20.
We compared gastric acid secretion in response to various stimuli in normal and streptozotocin (STZ)-induced diabetic rats, in an attempt to characterize the alteration of acid secretory response in diabetic conditions. Animals were injected STZ (70 mg x kg(-1), i.p.) and used after 5 weeks of diabetes with blood glucose > 350 mg x dL(-1). Under urethane anesthesia, a rat stomach was mounted on an ex vivo chamber, perfused with saline and acid secretion was measured at pH 7.0 using a pH-stat method and by adding 100 mM NaOH. The acid secretion was stimulated by i.v. infusion of either histamine (4 mg x kg(-1) x h(-1)), pentagastrin (60 microg x kg(-1) x h(-1)) or carbachol (20 microg x kg(-1) x h(-1)) or i.v. injection of YM-14673 (0.3 mg x kg(-1)), an analog of thyrotropin-releasing hormone, or vagal electrical stimulation (2 ms, 3 Hz, 0.5 mA). In normal rats, gastric acid secretion was increased in response to either histamine, pentagastrin, carbachol, YM-14673 or electrical vagal stimulation. In STZ diabetic rats, however, changes in acid secretion varied depending on the stimuli; the acid secretory responses to histamine remained unchanged, those to YM-14673 and vagal electrical stimulation significantly decreased, but the responses to both pentagastrin and carbachol were significantly enhanced as compared to normal rats. Luminal release of histamine in response to both pentagastrin and carbachol was increased in STZ-diabetic rats as compared to normal animals. The altered acid secretory responses in STZ diabetic rats were partially reversed by daily injection of insulin with amelioration of high blood glucose levels. These results suggest that STZ-diabetic rats showed different changes in gastric acid secretory responses to various stimuli; no change in response to histamine, a decrease to both YM-14673 and vagal electrical stimulation and an increase to both pentagastrin and carbachol. The increased acid secretory response may be associated with an enhanced release of mucosal histamine, while the decreased response may be due to vagal neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号