首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The tolerance of a cell line (IMC-HZ-1) from a moth, Heliothis zea, for the monovalent cations Na+ and K+ were defined. Cells shifted to media containing more than 70 mM of K+ showed decreased growth rates. No evidence was obtained for Na+ toxicity. The osmotic pressure tolerances were influenced by the K+ concentration of the medium. The richer the medium was in K+, the narrower was the spectrum of osmotic pressure tolerance. Once the limit of K+ tolerance was exceeded, the rate of decline of growth was linear with respect to further increases in K+. This rate of decline was independent of osmotic pressure. The initial responses of cells during one subculture (2 to 4 population doublings) in media differing from the standard medium (used to maintain the cell line) were not reliable indicators of the growth potential of the cells. Continued subculture in such media resulted in an upward trend in population growth rates in most cases.  相似文献   

2.
A salt-tolerant callus line of Lycopersicon peruvianum has been obtained by exposing the cells, in suspension cultures and then in callus, to increasing concentrations of NaCl (50–350mM). This selected line grew better than the nonselected line at all levels of NaCl. Moreover, this selected line grew better in media containing salt than in those without it. It retained its tolerance after subculture for 3 passages (3 months) on salt-free medium. The growth of the selected line in mannitol was similar to that of the nonselected line, which suggested that the superiority of the selected line under salt stress was not due to osmotic stress tolerance. The ions SO 4 –– and K+ were highly toxic to L. peruvianum root callus, while Na+, Mg++ and Cl were less toxic.  相似文献   

3.
Summary Movements of K+, Na+, and Cl}- ions during transcellular osmosis were studied in internodal cells ofNitella flexilis. Much K+ was released from the endosmotic cell part, but only a little from the exosmotic cell part. The amount of K+ released depended on the osmotic gradient driving transcellular osmosis. Movement of Na+ was hardly detected. Cl}- was released in nearly the same amounts as K+. Release of K+ from the endosmotic cell half was stimulated remarkably by lowering the temperature from 20 to 1 °C, and also by lowering the internal osmotic pressure but inhibited by raising it.The dependence of K+ release on osmotic gradient, internal osmotic pressure and temperature can be explained by their effects on membrane depolarization and membrane resistance (Hayama et al. 1978). We concluded thatP K remained unchanged, whileP Cl increased a great deal in the endosmotic cell part.  相似文献   

4.
The effects of saline-stresses due to different salts on growth and on foliar solute concentrations in seedlings of two species of wheat that differed in salt tolerance. Triticum aestivum L. cv. Probred and Triticum turgidum L. (Durum group) cv. Aldura, were studied. Triticum aestivum is the more salt tolerant species. The salts used were NaCl, KCI, a 1:1 mixture of NaCI and KCI, and these same monovalent cation salts but mixed with CaCI2 at a ratio of 2:1 on a molar basis of monovalent to divalent cation salts. Growth inhibition of both species was a function of media osmotic potentials. There was a small additional inhibition of growth if KCI replaced NaCI as the salinizing salt. CaCI2 had little or no effect on growth inhibition beyond an osmotic effect except at the most severe stress level, i.e. when Ca2+ concentrations may be excessive. The amounts of water-soluble Ca2+ were about 10 times higher in leaves of plants grown in the presence of CaCI2 than in its absence, but its concentrations even then were approximately 10% or less of those of the monovalent cations. Including CaCI2 in growth media resulted in a reduction in the amount of Na+ in leaves compared to the amounts in plants grown at the same osmotic potential but in the absence of CaCI2. Triticum aestivum was a better Na+-excluder than T. turgidum. With CaCI2 in media, (Na++ K+) remained relatively constant or increased by small amounts as media osmotic potentials décreased. In the absence of CaCI2+ (Na++ K+) increased by large amounts when media osmotic potentials were at ?0.6 and ?0.8 MPa. It is concluded that the accumulation system in leaves for monovalent cations was under feed-back control, and that this control mechanism was inhibited by high media concentrations of Na+ and/or K+. Sucrose was present at a constant amount under all growth conditions. Proline started accumulating when (Na++ K+) exceeded a threshold value of 200 μmol (g fresh weight)?1. Its concentration was 5 to 13% of that portion of (Na++ K+) that exceeded the threshold value.  相似文献   

5.
Summary The effect of changes in osmotic pressure and in the Na+/K+ ratio on the doubling time, maximum cell population, enzyme activity, and isoenzyme distribution pattern in suspension cultures of L cells was determined. The growth of viable cells is relatively flat over a rather wide range of osmotic pressures (220 to 440 mOsm per kg). The presence of extra salt or sucrose beyond that needed to reach the minimum osmotic pressure (220) is detrimental to cell growth as reflected by a delay in the onset of logarithmic growth, a slower growth rate, a decreased maximum population, and accelerated death phase. Excessive K+ ion is toxic, but the level at which it is toxic interacts with osmotic pressure of the medium. Enzyme activity and isoenzyme distribution patterns for those enzymes studied did not vary as a function of osmotic pressure, ionic ratios, or medium concentration.  相似文献   

6.
Vigor and salt tolerance in 3 lines of tall wheatgrass   总被引:1,自引:0,他引:1  
The F1 progeny of the cross of two salt-tolerant lines of Thinopyrum elongatum [Host] D. R. Dewey grew better than either parent under non-saline and saline growth conditions. Under non-saline conditions, the hybrid produced 1.8 times as much vegetative tissue as one parent and 3.2 times more than the other parent in the same length of time. The relative growth rates of the 2 parental lines decreased equally as media osmotic potentials decreased. The relative growth rate of the hybrid did not decrease as rapidly as that of the parents; therefore, it was concluded that the greater growth of the hybrid was due to increased salt tolerance. Carbohydrate reserves and water-soluble solutes believed to be involved in osmotic adjustment were assayed to determine if there were any differences between the hybrid and its parents in their abilities to accumulate these compounds. The concentrations of these constituents were measured at dawn and at dusk of the same day in plants grown in media at osmotic potentials ranging from –0.1 to –1.2 MPa. There were no differences in pool sizes of the organic compounds in the 3 lines. Starch increased 10–40 fold in leaves from dawn to dusk and sucrose increased 100-fold. However, this pattern was unaffected by salinity. Conversely, betaine concentrations increased with increasing salinity but were the same at dawn and dusk. Na+ and K+ were affected by both light and salinity. Cl was one-half (Na++ K+) on a molar basis under all conditions. Proline accumulated when (Na++ K+) exceeded 200 μmol (g fresh weight)?1. Since this amount of (Na++ K+) existed only in tissues harvested at dusk from severely saline-stressed plants, only leaves from such plants harvested at dusk contained proline.  相似文献   

7.
An osmotically (mannitol) tolerant callus line of Vigna radiata (L.) Wilczek has been isolated from callus cultures grown on modified PC-L2 medium supplemented with increasing concentrations of mannitol. The tolerance was stable and retained after growth in the absence of mannitol selection for 2 months. The growth of the tolerant line, in the presence of mannitol (540 mol m-3) was comparable to that of a sensitive callus line growing in the absence of mannitol. This line not only grew well on media containing up to 720 mol m-3 mannitol, but also required 450 mol m-3 mannitol for its optimal growth. Osmotically tolerant callus also showed increased tolerance to NaCl (0–250 mol m-3) stress as compared to sensitive callus. Accumulation of Na+ was lower, and the level of K+ was more stable in osmotically tolerant than in sensitive calli, when both were exposed to salt. The free proline content of both tolerant and sensitive calli increased on media supplemented with mannitol or NaCl. However, the proline content of sensitive callus was higher than in tolerant callus in the presence of same concentrations of mannitol or NaCl.Abbreviations NAA -naphthaleneacetic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine  相似文献   

8.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

9.

Main conclusion

Salt sensitivity in chickpea is determined by Na+ toxicity, whereas relatively high leaf tissue concentrations of Cl? were tolerated, and the osmotic component of 60-mM NaCl was not detrimental.Chickpea (Cicer arietinum L.) is sensitive to salinity. This study dissected the responses of chickpea to osmotic and ionic components (Na+ and/or Cl?) of salt stress. Two genotypes with contrasting salt tolerances were exposed to osmotic treatments (?0.16 and ?0.29 MPa), Na+-salts, Cl?-salts, or NaCl at 0, 30, or 60 mM for 42 days and growth, tissue ion concentrations and leaf gas-exchange were assessed. The osmotic treatments and Cl?-salts did not affect growth, whereas Na+-salts and NaCl treatments equally impaired growth in either genotype. Shoot Na+ and Cl? concentrations had markedly increased, whereas shoot K+ had declined in the NaCl treatments, but both genotypes had similar shoot concentrations of each of these individual ions after 14 and 28 days of treatments. Genesis836 achieved higher net photosynthetic rate (64–84 % of control) compared with Rupali (35–56 % of control) at equivalent leaf Na+ concentrations. We conclude that (1) salt sensitivity in chickpea is determined by Na+ toxicity, and (2) the two contrasting genotypes appear to differ in ‘tissue tolerance’ of high Na+. This study provides a basis for focus on Na+ tolerance traits for future varietal improvement programs for salinity tolerance in chickpea.
  相似文献   

10.
Responses of Atriplex spongiosa and Suaeda monoica to Salinity   总被引:14,自引:7,他引:7       下载免费PDF全文
The growth and tissue water, K+, Na+, Cl, proline and glycinebetaine contents of the shoots and roots of two Chenopodiaceae, Atriplex spongiosa and Suaeda monoica have been measured over a range of external NaCl salinities. Both species showed some fresh weight response to low salinity mainly due to increased succulence. S. monoica showed both a greater increase in succulence (at low salinities) and tolerance of high salinities than A. spongiosa. Both species had high affinities for Na+ and maintained constant but low shoot K+ contents with increasing salinity. These trends were more marked with S. monoica in which Na+ stimulated the accumulation of K+ in roots. An association between high leaf Na+ accumulation, high osmotic pressure, succulence, and a positive growth response at low salinities was noted. Proline accumulation was observed in shoot tissues with suboptimal water contents. High glycinebetaine contents were found in the shoots of both species. These correlated closely with the sap osmotic pressure and it is suggested that glycinebetaine is the major cytoplasmic osmoticum (with K+ salts) in these species at high salinities. Na+ salts may be preferentially utilized as vacuolar osmotica.  相似文献   

11.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

12.
The cation content of Bifidobacterium bifidum subsp. pennsylvanicum was markedly influenced by the washing procedure of the cells, by the growth phase and the temperature, and by the composition of the culture medium. Optimal retention of cations was achieved by washing with 0.25 M MgCl2 at 20 C. The intracellular Na+ concentration rose during growth in normal medium to a constant value in the stationary phase, the K+ concentration rose in the exponential phase, but fell in the stationary phase. Cells from 29-C cultures contained more Na+ and less K+ in the stationary phase than did cells from 37-C cultures, but the total cation content was the same at 29 and 37 C.Intracellular Na+ and K+ concentrations were dependent on the concentrations in the medium and on its osmolarity. The intracellular Na+/K+ ratio varied from 0.04 to 2.3. The concentrations of Na+, K+ and phosphate in the medium hardly affected growth. Mg2+-deficiency of the medium markedly decreased the concentration of Mg2+ within the cell; its concentration in the cell sap was greatly affected, but the amount of sedimentable, bound Mg2+ only slightly. The content of K+ within the cell decreased in Mg2+-deficient medium, but the concentration of Na+ did not. Omission of Tween 80 as well as its substitution by Tween 20 caused a decrease of intracellular K+. Cells from Tween 40 and Tween 60 cultures additionally contained markedly less Na+.The present investigations have been carried out with financial support from the Netherlands Organization for the Advancement of Pure Research (ZWO) through the Netherlands Foundation for Chemical Research (SON).  相似文献   

13.
Pediococcus soyae nov. sp., which has an inherited salt tolerant nature, is grown in solutions of high osmotic pressure. When this strain is transferred from 0.5% salted medium to a new medium containing 18% sodium chloride, the viable counts of this organism firstly decrease from about one half to one-third of the inoculated cells, and then normal growth occurs. This indicates the occurrence of physiological adaptation at an early stage of growth.

The growth of this lactic acid bacterium is observed in concentrated solutions of various inorganic salts. The solutions containing Na+, K+, Cl?, NO3? and SO4– – ions are not toxic for the organism, and the organism can grow in solutions of 133 atm. osmotic pressure, generally. However, Li+, Ca++, Mg++ and Br+ are, toxic for growth.

In concentrated sugar solutions, this organism also propagates well, and growth is observed in the media containing 50% glucose or 60% sucrose, osmotic pressure being 105 and 84 atm., respectively. Therefore, Pediococcus soyae nov. sp. is osmotolerant.  相似文献   

14.
Four selected NaCl-tolerant cell lines of Sour orange (Citrus aurantium) were compared with the nonselected cell line in their growth and internal ion content of Na+, K+, and Cl when exposed to increasing NaCl concentrations. No difference was found among the various NaCl-tolerant cell lines in Na+ and Cl uptake, and all these cell lines took up similar or even larger amounts of Na+ and Cl than the NaCl-sensitive cell line. Exposure of cells of NaCl-sensitive and NaCl-tolerant lines to equal external concentrations of NaCl, resulted in a greater loss of K+ from the NaCl-sensitive cell line. This observation leads to the conclusion that growth and ability to retain high levels of internal K+ are correlated. Exposure of the NaCl-tolerant cell lines to salts other than NaCl resulted in even greater tolerance to Na2SO4, but rather poor tolerance to K+ introduced as either K2SO4 or KCl; the latter has a stronger inhibitory effect. The NaCl-sensitive cell line proved to be more sensitive to replacement of Na+ by K+. Analyses of internal Na+, K+, and Cl concentrations failed to identify any particular internal ion concentration which could serve as a reliable marker for salt tolerance.  相似文献   

15.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

16.
Summary The effect of the loop diuretic furosemide (4-chloro-N-furfuryl-5-sulfamoyl-anthranilic acid) on the thiol-dependent, ouabain-insensitive K(Rb)/Cl transport in low K+ sheep red cells was studied at various concentrations of extracellular Rb+, Na+ and Cl. In Rb+-free NaCl media, 2×10–3 m furosemide inhibited only one-half of thiol-dependent K+ efflux. In the presence of 23mm RbCl, however, the concentration of furosemide to produce 50% K+ efflux inhibition (IC50) was 5×10–5 m. In Rb+ containing NaCl media, the inhibitory effect of 10–3 m furosemide was equal to that caused by NO 3 replacement of Cl in the medium. The apparent synergistic action of furosemide and external Rb+ on K+ efflux was also seen in the ouabain-insensitive Rb+ influx. A preliminary kinetic analysis suggests that furosemide binding alters both maximal K+(Rb+) transport and apparent external Rb+ affinity. In the presence of external Rb+, Na+ (as compared to choline) exerted a small but significant augmentation of the furosemide inhibition of K+(Rb+) fluxes. There was no effect of Cl on the IC50 value of furosemide. As there is no evidence for coupled Na+K+ cotransport in low K+ sheep red cells, furosemide may modify thiol-dependent K+(Rb+/Cl flux or Rb+ (and to a slight degree Na+) modulate the effect of furosemide.  相似文献   

17.
Agropyron elongatum [Host. (Beauv.)] [cv. Arizona Glendale, was grown in liquid medium salinized with either NaCl, KCI, or a 50:50 mixture of these two salts at osmotic potentials ranging from 0 to –1.6 MPa. The amount of growth in 21 days was measured, and extracts were made of the shoots at this time. The extracts were assayed for low-molecular-weight organic compounds (glucose, fructose, sucrose, be-taine, proline) and inorganic solutes (Na+, K+, Cl?, P.). The purpose was to determine if there was any correlation between the harmful effect of salinity on growth and the concentrations of solutes in tissues. Growth inhibition of A. elongatum was roughly proportional to the osmotic potential of the growth medium and was independent of the ionic composition of the salinizing salts. Total monovalent cation (the sum of Na+ and K+) concentrations and the ratio of these two cations in leaves were mainly a function of the ionic compostion of the salt in growth media, and, to a lesser degree, of osmotic potentials. F At an osmotic potential of –0.2 MPa, total monovalent cation in leaves was the same as in non-stressed plants. However, if the salinizing salt contained NaCl, there was an increase in foliar Na+ with a balancing decrease in K+. At stress levels between –0.4 and –1,6 MPa, and, if the media were salinized with either 100% NaCl or a 50:50 mixture of NaCl and KCI, total monovalent cation concentrations remained constant at a value that was twice that in non-stressed plants. Although total monovalent cation concentrations were equal in plants grown under these two salinity conditions, the K+/Na+ ratios shifted from a value of 1:2 in plants grown in 100% NaCl to 3:1 in plants subjected to the 50:50 mixture. If 100% KCI was used to salinize media, total monovalent cation was 80% of its concentration in NaCl-treated plants in the range of –0.4 to -1.2 MPa. At –1.6 MPa due to 100% KCI, total monovalent cation was double that in plants subjected to -0.4 MPa. In the range of osmotic potentials from–0.2 to –1.2 MPa, the chloride:cation ratio was 1:2. At –1.6 MPa the ratio changed to 3:4. Proline started accumulating in leaves of A. elongatum when the tissue concentration of total monovalent cation exceeded 200 μ (g fresh weight)?1. Above this threshold value of total monovalent cation, the proline concentration of leaves was 6% of the amount of total monovalent cation that exceeded 200 umol (g fresh weight)1.  相似文献   

18.
A method to determine intracellular cation contents in Dunaliella by separation on cation-exchange minicolumns is described. The separation efficiency of cells from extracellular cations is over 99.9%; the procedure causes no apparent perturbation to the cells and can be applied to measure both fluxes and internal content of any desired cation. Using this technique it is demonstrated that the intracellular averaged Na+, K+, and Ca2+ concentrations in Dunaliella salina cultured at 1 to 4 molar NaCl, 5 millimolar K+, and 0.3 millimolar Ca2+ are 20 to 100 millimolar, 150 to 250 millimolar, and 1 to 3 millimolar, respectively. The intracellular K+ concentration is maintained constant over a wide range of media K+ concentrations (0.5-10 millimolar), leading to a ratio of K+ in the cells to K+ in the medium of 10 to 1,000. Severe limitation of external K+, induces loss of K+ and increase in Na+ inside the cells. The results suggest that Dunaliella cells possess efficient mechanisms to eliminate Na+ and accumulate K+ and that intracellular Na+ and K+ concentrations are carefully regulated. The contribution of the intracellular Na+ and K+ salts to the total osmotic pressure of cells grown at 1 to 4 molar NaCl, is 5 to 20%.  相似文献   

19.
Shoots of Thellungiella derived by micropropagation were used to estimate the plants'' salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10–100 mM) and NaCl (100–300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.Key words: Thellungiella salsuginea, Thellungiella botschantzevii, salt tolerance, isolated shoots, growth, rhizogenesis, ion accumulation  相似文献   

20.
Carrot cells (Daucus carota L.) in suspension culture exposed to medium containing 150 mM NaCl plasmolyzed immediately and deplasmolyzed within 35 to 40 hr. Three days after exposure to NaCl the cells resumed proliferation. Accommodation to salinity and renewal of growth was accompanied by absorption of Na+ from the external medium. On completion of deplasmolysis, K+ concentration in the cytosol doubled and Na+ concentration approximated that of K+. The vacuolar K+ concentration was practically unchanged while Na+ accumulated to a concentration double that of K+. Cl−- accumulation started later and eventually exceeded that of Na+ plus K+. Malate was redistributed during accommodation to salinity and eventually returned to its initial level. Amino acid content in the cytosol increased fivefold, while in the vacuole it remained unchanged. These results show that: 1) recovery from osmotic shock requires absorption of easily penetrating solute, mainly Na+; 2) distribution of solutes, absorbed or synthesized in cells exposed to salinity, is a dynamic process; 3) cells could grow and proliferate in high NaCl content in the cytosol; 4) red beet root cells grown in the presence of NaCl contain higher cytoplasmic Na+ than K+; and 5) during adjustment to salinity small spherical carrot cells survive the osmotic shock and do not show any detectable damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号