首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An immune cellular biosensing system has been constructed to assess immunomodulating effects of chemicals. Production of nitric oxide in the immune cellular biosensing system was used as readout of an immune cellular response for assessing the immunomodulating effects of chemicals. The macrophage-like cell line RAW264.7, which has signaling pathways of inducible nitric oxide synthase, was employed in the cellular biosensing system. The immune cellular biosensing system consisted of a Pt counter electrode, an Ag/AgCl reference electrode, and a gold electrode onto which a polyion complex layer was coated to allow adherence of the RAW264.7 cells. As the results of evaluating effects of a polyion complex layer on cell viabilities by using WST-8 assay, the polyion complex layer did not affect RAW264.7 cells. The polyion-coated gold electrode could measure NO without the drawback of electrochemical interference that occurs with differential pulse voltammetry. The detection limit of the immune cellular biosensing system was 4.2 nM released NO as measured by double potential step chronoamperometry. The potent immune activating abilities of lipopolysaccharide and interferon-gamma could be assessed by the cellular biosensing system; NO release from cells was detected within 600 ms.  相似文献   

2.
In order to assess blood pressure control drugs, the endothelial cellular biosensing system for assessing blood pressure control drugs was constructed. This system consists of human umbilical vein endothelial cells (HUVEC) on a polyion-coated gold electrode, a platinum counter electrode and an Ag/AgCl reference electrode. Nitric oxide (NO) as an indicator of blood vessel relaxation was detected with a polyion-coated electrode in the system. The NO detection limit of this electrode was 8.4 nM by differential pulse voltammetry (DPV). The drugs of blood pressure control (acetylcholine chloride (AcChCl), NOC 7 and NG-monomethyl-L-arginine (L-NMMA)) were assessed with this endothelial cellular biosensing system. One milli molar of AcChCl make NO released from HUVEC stimulated by activating endothelial nitric oxide synthase (eNOS) in HUVEC. In the case of 5 mM of L-NMMA, NO releasing was inhibited by inhibiting eNOS activation by 1 mM of AcChCl. NOC 7 immediately released NO regardless of eNOS activation in endothelial cells.  相似文献   

3.
Nitric oxide (NO) produced by macrophages plays an important role in host defense and inflammation. We found that two agrochemicals, alachlor and carbaryl, inhibit lipopolysaccharide (LPS)-induced NO production by macrophages. In the present study, we investigated this inhibitory mechanism in RAW 264 cells. Both chemicals inhibited LPS-induced iNOS protein and mRNA expression as well as murine iNOS promoter activity. When treating these chemicals with reducing agents, the inhibition by carbaryl was reversed, but not the inhibition by alachlor. These chemicals also inhibited LPS-induced interferon-beta (IFN-beta) expression, an indispensable factor for LPS-induced iNOS expression. The inhibited iNOS expression, however, was not restored by exogenous IFN-beta supplementation. LPS-induced nuclear translocation of NF-kappaB, which is necessary for the expression of IFN-beta and iNOS, was inhibited by these chemicals: however, the LPS-induced degradation of IkappaB-alpha and IkappaB-beta was inhibited only by alachlor. These results indicate that alachlor and carbaryl differentially impair the LPS-induced NF-kappaB activation, leading to the inhibition of NO production.  相似文献   

4.
Identification of nitric oxide (NO) as a neurotransmitter in the CNS resulted in initiation of numerous studies aimed at elucidating the roles of NO not only at a cellular level, but also in regulation of the activity of specific physiological systems coordinated by the brain. In this lecture, we will discuss the state of current knowledge about cellular events in the brain realized with the involvement of NO, distribution of NO-producing neurons in cerebral structures providing central cardiovascular control, peculiarities of NO production, and mechanisms underlying NO-mediated neuromodulatory effects on cardiovascular function. Activation of the NO system in the lower brainstem modulates a variety of neuronal pathways; NO was shown to induce GABA and glutamate releases within the medulla. The NO system in the brain is activated in the states of homeostatic imbalance, including hypertension and stress.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 466–478, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

5.
Nitric oxide (NO) has recently joined the select circle of the ubiquitous molecules of plant signalling networks. Indeed, the last decade has produced a tremendous amount of data that evidence the diversity of physiological situations in which NO is involved in plants and the complexity of NO biology. These data also underline our difficulties in providing simple answers to the cardinal questions of where NO comes from and how the NO message is converted into a physiological response. The identification of NO primary targets and NO-regulated genes provides new opportunities to connect NO biochemistry and NO biology. This review summarises our current understanding of NO signalling, from the generation of the NO message to its execution into a cellular response. The review particularly considers whether and how NO may be responsible for specific signalling in different physiological processes.  相似文献   

6.
Yang D  Tan Z  Pan JY  Wang TH 《生理学报》2002,54(1):17-22
实验利用大鼠血管平滑肌细胞(vascular smooth muscle cells,VSMC)作为模型,观察17-β雌二醇(E2)对VSMC增殖和原癌基因c-fos表达的影响,并探讨VSMC源性一氧化氮(NO)在基中的作用,检测指标包括NO释放的测定,细胞计数、^3H-Tdr掺入,噻唑蓝(MTT)测定和c-fosmRNA表达,结果显示,E2(10^-12-10^-8mol/L)呈浓度依赖性地促进VSMC中NO的释放;10^-8mol/LE2能明显抑制10%小牛血清(FCS)和10^-7mol/L内皮素-1(ET-1)诱导的细胞增殖和DNA合成,E2的抑制作用均可被雌激素受体(ER)拮抗剂tamoxifen(10^-7mol/L)和一氧化氮合酶抑制剂L-NAME(10^-6mol/L)明显减轻;E2(10^-8mol/L)可明显抑制10^-7mol/LET-1诱导的VSMCc-fos表达,这种抑制作用可被L-NAME(10^-6mol/L)明显减轻,这些结果提示E2能抑制VSMC增殖和原癌基因c-fos表达,这种促进VSMC的NO释放密切相关,而且该作用至少部分通过ER介导。  相似文献   

7.
Nitric oxide (NO), generated by NO synthases (NOSs), has multifarious roles in signal transduction. Reactive oxygen species (ROS), generated by ubiquitous NADPH oxidases (NOXs), also participate in cellular signaling. However, the coordination of signals conveyed by NO and ROS is poorly understood. We show that the small GTPase Rac, a component of some NOXs, also interacts with and regulates the constitutively-expressed NOSs. Cellular NO and O(2)(-) production increase or decrease together following activation or inhibition of Rac, and Rac inhibition reveals transduction mechanisms that depend upon NO (vasodilation), ROS (actin polymerization) or both (cytoskeletal organization). Thus, signaling by NO and ROS may be coordinated through a common control element.  相似文献   

8.
Xia CF  Huo Y  Xue L  Zhu GY  Tang CS 《生理学报》2001,53(6):431-434
为探讨抗炎因子--白细胞介素-10(IL-10)对大鼠主动脉一氧化氮(NO)/一氧化氮合酶(NOS)系统的影响,应用Griess试剂、^3H-瓜氨酸生成及蛋白免疫印迹杂交等方法,测定IL-10孵育对血管NO释放、NOS活性及表达的影响。结果发现细菌脂多糖(LPS)呈浓度领带性地激活诱导型NOS(iNOS),促进NO生成。IL-10(10^-10-10^-8g/ml)呈浓度依赖性地上调内皮型NOS(eNOS)蛋白表达及其活性,但对iNOS活性及表达无明显影响,IL-10(10^-9-10^-8g/ml)显著抑制10μg/ml LPS诱导的NO生成和iNOS激活;而高浓度IL-10(10^-7g/ml)则上调iNOS的活性,对eNOS蛋白的表达知活性无明显影响。因此IL-10对NO/NOS系统具有双重影响,一方面可抑制炎症介质诱发的作为炎性物质的iNOS的表达及激活,另一方面可上调内皮源扩血管物质NO的释放。  相似文献   

9.
Control of cardiac function was investigated juvenile brown trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walbaum) using inhibitors of nitric oxide synthase (NOS), (L-NAME, NG-nitro-L-arginine and L-NMMA, NG-monomethyl-L-arginine) and a substrate of NOS (L-arginine). Salmonid alevins are excellent models for such studies since they are transparent, the beating heart is easily observed, diffusing distances are small, and they respond within a few seconds to exogenously administered chemicals. The response to inhibitors of NOS (L-NAME or L-NMMA) was tachycardia interpreted as vasoconstriction through lowered capacity for synthesis of NO. This could be reversed by addition of L-arginine and the subsequent bradycardia was explained as a vasodilation resulting from increased synthesis of NO. Blood flow into the heart is mainly via the vitelline vein and changes of flow resulting from constriction or dilation of this vessel may be probably major determinants of heart rate. The results provide evidence for the presence NOS in juvenile fish and indicate a physiological role for NO in cardiovascular control.  相似文献   

10.
The pore-forming cytolysin of Vibrio vulnificus (VVC) causes severe hypotension and vasodilatation in vivo. Under the condition of bacterial sepsis, large amounts of nitric oxide (NO) produced by inducible NO synthase (iNOS) can contribute to host-induced tissue damage causing hypotension and septic shock. In this study, we investigated the effect of purified VVC on NO production in mouse peritoneal macrophages. VVC induced NO production in the presence of interferon-gamma. Increased NO production was not affected by polymyxin B, and heat inactivation of cytolysin abolished the NO-inducing capability. NO production was induced at the same concentration range of cytolysin for pore formation, as evidenced by the release of preloaded 2-deoxy-d-[(3)H]glucose. At the higher concentrations of cytolysin causing the depletion of cellular ATP, no NO production was observed. Increased expression of iNOS and activation of NFkappaB by VVC were confirmed by Western blotting and gel shift assay, respectively. These results suggest the role of cytolysin as an inducer of iNOS and NO production in macrophage and as a possible virulence determinant in V. vulnificus infection.  相似文献   

11.
As a signalling molecule of the integral membrane protein family, caveolin participates in cellular signal transduction via interaction with other signalling molecules. The nature of interaction between nitric oxide (NO) and caveolin in the brain, however, remains largely unknown. In this study we investigated the role(s) of NO in regulating caveolin-1 expression in rat ischemic brains with middle cerebral artery occlusion (MCAO). Exposure to 1 h ischemia induced the increases in neuronal nitric oxide synthase (nNOS) and NO concentration with concurrent down-regulation of caveolin-1 expression in the ischemic core of rat brains. Subsequent 24 h or more reperfusion time led to an increase in inducible NOS (iNOS) expression and NO production, as well as a decline of caveolin-1 protein at the core and penumbra of the ischemic brain. Afterwards, NOS inhibitors and an NO donor were utilized to clarify the link between NO production and caveolin-1 expression in the rats with 1 h ischemia plus 24 h reperfusion. N(G)-nitro-l-arginine methyl ester (L-NAME, a non-selective NOS inhibitor), N(6)-(1-iminoethyl)-lysine (NIL, an iNOS inhibitor), and 7-nitroindazole (7-NI, a nNOS inhibitor) prevented the loss of caveolin-1 in the core and penumbra of the ischemic brain, whereas l-N(5)-(1-iminoethyl)-ornithine (L-NIO, an endothelial NOS inhibitor) showed less effect than the other NOS inhibitors. S-Nitroso-N-acetylpenicillamine (SNAP, a NO donor) down-regulated the expression of caveolin-1 protein in normal and ischemic brains. These results, when taken together, suggest that NO modulates the expression of caveolin-1 in the brain and that the loss of caveolin-1 is associated with NO production in the ischemic brain.  相似文献   

12.
大鼠脑线粒体NOS及L—Arg转运的生化特性   总被引:4,自引:0,他引:4  
Cao J  Wang L  Zhao BL  Chen QT  Qi YF  Tang CS 《生理学报》2001,53(4):261-264
测定分离纯化的大鼠脑线粒体(mitochondria,Mt)L-精氨酸(L-arginine,L-Arg)/一氧化氮合酶(nitricoxidesynthase,NOS)/NO系统,L-Arg转运和NOS的活性。结果显示正常大鼠脑Mt膜上存在高亲和、低转运、可饱和的L-Arg转运体。最大转运速率Vmax为5.87±0.46nmol/mgpro·min  相似文献   

13.
Paraquat (PQ) is a well-known pneumotoxicant that exerts its toxic effect by elevating intracellular levels of superoxide. In addition, production of pro-inflammatory cytokines has possibly been linked to PQ-induced inflammatory processes through reactive oxygen species (ROSs) and nitric oxide (NO). However, the role of NO in PQ-induced cell injury has been controversial. To explore this problem, we examined the effect of NO on A549 cells by exposing them to the exogenous NO donor NOC18 or to cytokines; tumor necrosis factor-α, interleukin-1 β and interferon-γ, as well as PQ. Although the exogenous NO donor on its own had no effect on the release of lactate dehydrogenase (LDH), remarkable release was observed when the cells were exposed to high concentrations of NOC18 and PQ. This cellular damage caused by 1 mM NOC18 plus 0.2 mM PQ was ascertained by phase contrast microscopy. On the other hand, NO derived from 25–50 μM NOC18 added into the medium improved the MTT reduction activity of mitochondria, suggesting a beneficial effect of NO on the cells. Incubation of A549 cells with cytokines increased in inducible NO synthase (iNOS) expression and nitrite accumulation, resulting in LDH release. PQ further potentiated this release. The increase in nitrite levels could be completely prevented by NOS inhibitors, while the leakage of LDH was not attenuated by the inhibition of NO production with them. On the other hand, ROS scavenging enzymes, superoxide dismutase and catalase, inhibited the leakage of LDH, whereas they had no effect on the increase in the nitrite level. These results indicate that superoxide, not NO, played a key role in the cellular damage caused by PQ/cytokines. Our in vitro models demonstrate that NO has both beneficial and deleterious actions, depending on the concentrations produced and model system used.  相似文献   

14.
目的和方法:采用HO活性抑制剂诱导大鼠高血压模型,观察血压变化、主动脉HO和NOS活性、CO和NO产生释放,并测定血浆和主动脉平滑肌组织中cGMP含量,以探讨内源性NO和CO在高血压发生机制中的作用及其相互关系。结果:大鼠应用HO抑制剂ZnDPBG腹腔注射2周后,继续饲养到第4周出现持续而稳定的高血压,同时总NOS(tNOS)和诱导型NOS(iNOS)的活性分别增加45.4%和73.3%(均为P〉  相似文献   

15.
Nitric oxide (NO) is a potent vasodilator which plays an important role in regulating vascular tones. Danshen, a Chinese herbal medicine has been widely used for the treatment of cardiovascular diseases. The objective of this study was to investigate the effect of magnesium tanshinoate B (MTB), a compound purified from Danshen, on the production of NO in human endothelial cell line (ECV304). After cells were incubated with MTB (1-10 µM) for 1 or 4 h, amounts of NO metabolites released by cells were quantified and cellular NOS activities were determined following the conversion of [3H]arginine to [3H]citrulline. The NOS protein expression was determined by Western immunoblotting analysis. MTB (1-10 µM) stimulated the release of NO and its metabolites from endothelial cells. Following MTB treatment, the cellular NOS activities were significantly enhanced with a concomitant increase in the levels of constitutive NOS (cNOS) protein mass (110-178%). Selective activation of cNOS by MTB may be employed therapeutically in modulating NO production in endothelial cells.  相似文献   

16.
Sun J 《生理学报》2007,59(5):544-552
一氧化氮(nitricoxide,NO)作为一种重要的信使分子参与缺血预适应(ischemic preconditioning,IPC)心肌保护。目前普遍认为NO通过经典的NO/cGMP依赖的信号转导途径调节线粒体ATP敏感性钾(ATP-sensitive potassium,KATP通道来发挥其保护作用,然而越来越多的数据表明NO还可能通过蛋白质巯基亚硝基化(S-nitrosylation)来发挥生理功能。蛋白质巯基亚硝基化,即蛋白质半胱氨酸巯基与NO基团形成共价键,是一种氧化还原依赖的蛋白质翻译后可逆修饰。蛋白质巯基亚硝基化不仅可以改变蛋白质的结构和功能,而且还可以阻抑目标半胱氨酸的进一步氧化修饰。IPC增加S-亚硝基硫醇(S-nitrosothi01)含量,引起蛋白质巯基亚硝基化。S-亚硝基硫醇还能发挥药理性预适应作用,抵抗心肌缺血,再灌注损伤。因此,蛋白质巯基亚硝基化是IPC心肌保护的一种重要途径,参与抵抗细胞内氧化应激和亚硝化应激(nitrosative stress)。  相似文献   

17.
本文探讨蒺藜皂苷(STT)对糖基化终产物(AGEs)形成及AGEs诱导的内皮细胞功能障碍的影响。以荧光法检测AGEs体外形成,MTT法检测细胞存活率,试剂盒方法检测细胞及培养上清液中的一氧化氮(NO)水平、诱导型NO合酶(iNOS)活力和超氧阴离子水平(O2-.)。结果显示STT促进AGEs形成,并加剧AGEs诱导的内皮细胞生长抑制,提高细胞NO分泌,增加iNOS活力和O2-.水平。与海可、替告皂苷元作用进行比较,发现STT的细胞损伤作用可能是海可皂苷元引起的。提示STT未能抑制体外AGEs形成,对AGEs引起的内皮细胞功能障碍无明显保护作用,反而可能通过增强iNOS酶活加剧细胞损伤。  相似文献   

18.
1. The neuroprotective effect of cactus polysaccharide (CP) on oxygen and glucose deprivation (OGD) and reoxygenation (REO)-induced damage in the cortical and hippocampal slices of rat brain was investigated. 2. Cell viability was evaluated by using the 2, 3, 5-triphenyl tetrazolium chloride (TTC) method. The fluorescence of propidium iodide (PI) staining was used for quantification of cellular survival, and lactate dehydrogenase (LDH) activity in incubation medium was assessed by LDH assay to evaluate the degree of injury. 3. The OGD ischemic condition significantly decreased cellular viability and increased LDH release in the incubation medium. CP (0.2 mg/l∼2 mg/l) protected brain slices from OGD injury in a dosage dependent manner as demonstrated by increased A 490 value of TTC, decreased PI intensity and LDH release. At the above concentration, CP also prevented the increase of nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity induced by OGD. 4. CP can protect the brain slices (cortical and hippocampus) against injury induced by OGD. Its neuroprotective effect may be partly mediated by the NO/iNOS system induced by OGD insult. Xianju Huang and Qin Li have contributed equally to this article.  相似文献   

19.
Nitric oxide (NO) has been implicated in both the pathogenesis of and protection from NMDA receptor-mediated neuronal injury. This apparent paradox has been attributed to alternate redox states of nitrogen monoxide, whereby, depending on the redox milieu, nitrogen monoxide can be neuroprotective via nitrosation chemistry or react with superoxide to form secondary toxic species. In our murine mixed cortical cell culture system, the NONOate-type NO donors diethylamine/NO complex sodium (Dea/NO), (Z)-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium++ +-1,2-diolate (Papa/NO), and spermine/NO complex sodium (Sper/NO), as well as the S-nitrosothiols S-nitroso-L-glutathione (GSNO) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP) (NO+ equivalents), decreased NMDA-induced neuronal injury in a concentration-dependent manner. 8-Bromo-cyclic GMP did not mimic the inhibitory effects of the donors, suggesting that the neuroprotection was not the result of NO-stimulated neuronal cyclic GMP production. Furthermore, neuronal injury induced by exposure of cultures to H2O2 was not altered by the presence of Dea/NO, indicating the absence of a direct antioxidant effect. NONOates did, however, reduce NMDA-stimulated uptake of 45Ca2+, whereas high potassium-induced 45Ca2+ accumulation, a measurement of entry via voltage-gated calcium channels, was unaffected. The parallel reduction of 45Ca2+ accumulation and NMDA neurotoxicity by NONOates mimicked that seen with an NMDA receptor antagonist. Electrochemical measurements of NO via an NO-sensitive electrode demonstrated that neuroprotective concentrations of all donors produced appreciable amounts of NO over the 5-min time frame. Determination of the formation of NO+ equivalents, as assessed by N-nitrosation of 2,3-diaminonaphthylene, revealed little or no observable N-nitrosation by Sper/NO, GSNO, and SNAP with significant N-nitrosation observed by Papa/NO and Dea/NO. However, addition of ascorbate (400 microM) effectively prevented the nitrosation of 2,3-diaminonaphthylene produced by Dea/NO and Papa/NO without altering their neuroprotective properties or their effects on 45Ca2+ accumulation. Present results indicate that the intrinsic NO/NO+ characteristics of NO donor compounds may not be a good predictor of their ability to inhibit NMDA receptor-mediated neurotoxicity at the cellular level.  相似文献   

20.
Glioblastoma multiforme is the most common malignant central nervous system tumor, and also among the most difficult to treat due to a lack of response to chemotherapeutics. New methods of countering the mechanisms that confer chemoresistance to malignant gliomas could lead to significant advances in the quest to identify novel drug combinations or targeted drug delivery systems for cancer therapy. In this study, we investigate the use of a targeted nitric oxide (NO) donor as a pretreatment to sensitize glioma cells to chemotherapy. The protein chlorotoxin (CTX) has been shown to preferentially target glioma cells, and we have developed CTX–NO, a glioma‐specific, NO‐donating CTX derivative. Pretreatment of cells with CTX–NO followed by 48‐h exposure to either carmustine (BCNU) or temozolomide (TMZ), both common chemotherapeutics used in glioma treatment, resulted in increased efficacy of both therapeutics. After CTX–NO exposure, both T98G and U‐87MG human malignant glioma cells show increased sensitivity to BCNU and TMZ. Further investigation revealed that the consequences of this combination therapy was a reduction in active levels of the cytoprotective enzyme MGMT and altered p53 activity, both of which are essential in DNA repair and tumor cell resistance to chemotherapy. The combination of CTX–NO and chemotherapeutics also led to decreased cell invasion. These studies indicate that this targeted NO donor could be an invaluable tool in the development of novel approaches to treat cancer. Biotechnol. Bioeng. 2013; 110: 1211–1220. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号