首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The red blood cells of normal adult ducks contain two main hemoglobins. The most abundant type, HbA, comprises approximately 80% of the total, with the remaining 20% being made up of HbD. An attempt was made to determine whether during hemolytic anemia a special alpha globin chain (alpha s) replaces the alpha chain of HbA found in normal animals. This special stress alpha globin, whose existence has been seriously questioned, was originally postulated to explain the sequence discrepancies obtained between alpha chains of normal and anemic chickens and ducks. Using gel electrophoresis, isoelectric focusing, and HPLC peptide mapping techniques no qualitative differences between the alpha A globins of normal and anemic animals were found. The nature of the beta globin chains present in adult ducks has also never been rigorously established. In this work, a variety of techniques, including HPLC, gel electrophoresis, and microcolumn amino acid analysis, were used to examine the beta chains from each hemoglobin. Using these methods, no differences were found between the beta globin chains of the two hemoglobins.  相似文献   

2.
The hemolysate of the Antarctic teleost Gobionotothen gibberifrons (family Nototheniidae) contains two hemoglobins (Hb 1 and Hb 2). The concentration of Hb 2 (15-20% of the total hemoglobin content) is higher than that found in most cold-adapted Notothenioidei. Unlike the other Antarctic species so far examined having two hemoglobins, Hb 1 and Hb 2 do not have globin chains in common. Therefore this hemoglobin system is made of four globins (two alpha- and two beta-chains). The complete amino-acid sequence of the two hemoglobins (Hb 1, alpha2(1)beta2(1); Hb 2, alpha2(2)beta2(2)) has been established. The two hemoglobins have different functional properties. Hb 2 has lower oxygen affinity than Hb 1, and higher sensitivity to the modulatory effect of organophosphates. They also differ thermodynamically, as shown by the effects on the oxygen-binding properties brought about by temperature variations. The oxygen-transport system of G. gibberifrons, with two functionally distinct hemoglobins, suggests that the two components may have distinct physiological roles, in relation with life style and the environmental conditions which the fish may have to face. The unique features of the oxygen-transport system of this species are reflected in the phylogeny of the hemoglobin amino-acid sequences, which are intermediate between those of other fish of the family Nototheniidae and of species of the more advanced family Bathydraconidae.  相似文献   

3.
To elucidate phylogenetic relationships among amniotes and the evolution of alpha globins, hemoglobins were analyzed from the Komodo dragon (Komodo monitor lizard) Varanus komodoensis, the world's largest extant lizard, inhabiting Komodo Islands, Indonesia. Four unique globin chains (alpha A, alpha D, beta B, and beta C) were isolated in an equal molar ratio by high performance liquid chromatography from the hemolysate. The amino acid sequences of two alpha chains were determined. The alpha D chain has a glutamine at E7 as does an alpha chain of a snake, Liophis miliaris, but the alpha A chain has a histidine at E7 like the majority of hemoglobins. Phylogenetic analyses of 19 globins including two alpha chains of Komodo dragon and ones from representative amniotes showed the following results: (1) The a chains of squamates (snakes and lizards), which have a glutamine at E7, are clustered with the embryonic alpha globin family, which typically includes the alpha D chain from birds; (2) birds form a sister group with other reptiles but not with mammals; (3) the genes for embryonic and adult types of alpha globins were possibly produced by duplication of the ancestral alpha gene before ancestral amniotes diverged, indicating that each of the present amniotes might carry descendants of the two types of alpha globin genes; (4) squamates first split off from the ancestor of other reptiles and birds.   相似文献   

4.
The primary structures of the hemoglobins Hb A, Hb A', Hb D and Hb D' of Rüppell's Griffon (Gyps rueppellii), which can fly as high as 11,300 m, are presented. The globin chains were separated on CM-Cellulose in 8M urea buffers, the four hemoglobin components by FPLC in phosphate buffers. The amino-acid sequences of five globin chains were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid-phase and gas-phase sequenators. The sequences are compared with those of other Falconiformes. A new molecular pattern for survival at extreme altitudes is presented. For the first time four hemoglobins are found in blood of a bird; they show identical beta-chains and differ in the alpha A- and alpha D-chains by only one replacement. These four hemoglobins cause a gradient in oxygen affinities. The two main components Hb A and Hb A' differ at position alpha 34 Thr/Ile. In case of Ile as found in Hb A' an alpha 1 beta 1-interface is interrupted raising oxygen affinity compared to Hb A. In addition the hemoglobins of the A- and D-groups differ at position alpha 38 Pro or Gln/Thr (alpha 1 beta 2-interface). Expression of Gln in Hb D/D' raises the oxygen affinity of these components compared to Hb A/A' by destabilization of the deoxy-structure. The physiological advantage lies in the functional interplay of four hemoglobin components. Three levels of affinity are predicted: low affinity Hb A, Hb A' of intermediate affinity, and high affinity Hb D/D'. This cascade tallies exactly with oxygen affinities measured in the isolated components and predicts oxygen transport by the composite hemoglobins over an extended range of oxygen affinities. It is contended that the mechanisms of duplication of the alpha-genome (creating four hemoglobins) and of nucleotide replacements (creating different functional properties) are responsible for this remarkable hypoxic tolerance to 11,300 m. Based on this pattern the hypoxic tolerances of other vultures are predicted.  相似文献   

5.
The primary structure of the hemoglobins from Jaguar (Panthera onco) are presented. Electrophoretic separations without and with a dissociating agent revealed the presence of two hemoglobin components, alpha 2 beta I2 and alpha 2 beta II2. The separation of the hemoglobin components was achieved by ion-exchange chromatography. The globin chains were separated by ion-exchange chromatography and also by reversed phase HPLC. The amino-acid sequences of the native chains and peptides were determined by liquid-phase and gas-phase sequencing. N-Acetylserine was detected by FAB-mass spectroscopy as N-terminal group of the beta I chain. The sequences are compared with that of human hemoglobin (Hb A).  相似文献   

6.
The erythrocytes of adult ratel contain two hemoglobin components, with two alpha- and one beta-chains. In this paper, their complete amino acid sequences are presented. The two alpha-chains differ in one residue at position 34 (Ala----Val) only. The primary structure of the chains was determined by sequencing the N-terminal regions (45 steps) and the tryptic peptides after their isolation from the digests by reversed-phase high-performance liquid chromatography. The alignment of these peptides was deduced from homology with other carnivora globins. The alpha-chains show 21 and the beta-chains 11 exchanges compared with human globin chains. In the alpha-chains, one heme- and two alpha 1/beta 1 contacts are exchanged. In the beta-chains there are three exchanges which involve one alpha 1/beta 1-, one alpha 1/beta 2- and one heme-contact. Between the ratel hemoglobin and those of carnivora a high degree of homology was found.  相似文献   

7.
The primary structures of the hemoglobin components Hb A and Hb D of the adult Andean Goose (Chloephaga melanoptera) are presented. The globin chains were separated on CM-Cellulose in 8M urea buffer. The amino-acid sequences were established by automatic Edman degradation of the globin chains and of the tryptic peptides in liquid- and gas-phase sequenators. The sequences are aligned with those of Greylag Goose (Anser anser) as a biological reference and other sequences of birds. A detailed evaluation of all residues of Andean Goose hemoglobins on the basis of the 12000 known avian globin sequences leads to a molecular pattern for high-altitude respiration of geese. The replacement of functional and structural importance is the unique occurrence of the residue beta 55 Leu----Ser (all other exchanges are functionally neutral), interrupting the same alpha 1 beta 1-interface contact (alpha 119-beta 55) that accounts for high-altitude respiration of the Barheaded Goose (Anser indicus); there the mutation is found on alpha A 119. Loosening the constraints of this interface must be interpreted as a destabilization of the low-affinity T-structure in favour of the high-affinity R-structure. The structural and functional significance of this interface for the molecular biology of high-altitude respiration of the Andean Goose and Barheaded Goose is discussed. Since Hb A consists of alpha A2 beta 2 and Hb D consists of alpha D2 beta 2 the mutation occurring in blood of the Andean Goose affects both hemoglobins whereas in the case of the Barheaded Goose only Hb A is affected. These results show that Hb D can be considered a biological reserve to enlarge situatively the normal hemoglobin function. A general molecular pattern for permanent (selective advantage of high intrinsic oxygen affinity) and transitory (selective advantage of graded oxygen affinities) adaptation to hypoxia is discussed. A survey on the sequence homology of the globin chains of geese (Anserinae) and ducks (Anatinae) is given.  相似文献   

8.
The deep-sea cold-seep clam Calyptogena soyoae has two homodimeric hemoglobins (Hbs I and II) in erythrocytes. The complete amino acid sequence of Hb I has been determined. It is composed of 144 amino acid residues, has a high content of hydrophobic residues, and a calculated molecular weight of 16,350 including a heme group. The sequence of Calyptogena Hb I showed high homology (42% identity) with that of Calyptogena Hb II (Suzuki, T., Takagi T. and Ohta, S. (1989) Biochem. J. 260, 177-182), although it has a long insertion of seven residues in the C-terminal region compared with Hb II. On the other hand, it showed low homology (12-20% identity) with other molluscan globins. As well as Hb II, Calyptogena Hb I lacked the N-terminal extension of 7-9 residues characteristic of molluscan intracellular hemoglobins, and the distal (E7) histidine was replaced by glutamine. A phylogenetic tree was constructed from 13 molluscan globins belonging to the five families Aplysiidae, Galeodidae, Potamididae, Arcidae and Vesicomyidae. The globin sequences of Calyptogena (Vesicomyidae) were found to be rather distant from other globin sequences, suggesting that they might conserve a primitive form of molluscan globins.  相似文献   

9.
The complete primary structures of alpha D-2- and beta-globin of hemoglobin D (Hb D) from the Aldabra giant tortoise, Geochelone gigantea, have been constructed by amino acid sequencing analysis in assistance with nucleotide sequencing analysis of PCR fragments amplified using degenerate oligonucleotide primers. Using computer-assisted sequence comparisons, the alpha D-2-globin shared a 92.0% sequence identity versus alpha D-globin of Geochelone carbonaria, a 75.2% versus alpha D-globin of Aves (Rhea americana) and a 62.4% versus alpha A-globin of Hb A expressed in adult red blood cells of Geochelone gigantea. Additionally, judging from their primary structures, an identical beta-globin was common to the two hemoglobin components, Hb A and Hb D. The alpha D-2- and beta-globin genes contained the three-exon and two-intron configurations and showed the characteristic of all functional vertebrate hemoglobin genes except an abnormal GC dinucleotide instead of the invariant GT at the 5' end of the second intron sequence. The introns of alpha D-2-globin gene were both small (224-bp/first intron, 227-bp/second intron) such that they were quite similar to those of adult alpha-type globins; the beta-globin gene has one small intron (approximately 130-bp) and one large intron (approximately 1590-bp). A phylogenetic tree constructed on primary structures of 7 alpha D-globins from Reptilia (4 species of turtles, 2 species of squamates, and 1 species of sphenodontids) and two embryonic alpha-like globins from Aves (Gullus gullus) and Mammals (Homo sapiens) showed the following results: (1) alpha D-globins except those of squamates were clustered, in which Sphenodon punctatus was a closer species to birds than turtles; (2) separation of the alpha A- and alpha D-globin genes occurred approximately 250 million years ago after the embryonic alpha-type globin-genes (pi' and zeta) first split off from the ancestor of alpha-type globin gene family.  相似文献   

10.
Nine hemoglobins were purified from blood of Salmo clarki by ion-exchange chromatography and preparative isoelectric focusing. The subunit structures of eight of the purified hemoglobins were studied by electrophoresis of globins in the presence of urea. Six are alpha 2 beta 2 tetramers while two appear to be heterotetramers of the type alpha alpha' beta 2 and alpha alpha' beta beta'. The effects of pH, nucleotides, and temperature on the oxygen equilibria of the purified hemoglobins were studied. Five hemoglobins with isoelectric points from 9.1 to 7.1 and one minor hemoglobin with an isoelectric point of 5.9 appear to have essentially identical oxygen binding properties. All have similar oxygen equilibria which are independent of pH and temperature and not affected by saturating amounts of ATP. Another minor hemoglobin with an isoelectric point below 5.9 has similar oxygen equilibria except for a possible pH dependence. Two hemoglobins, with isoelectric points of 6.5 and 6.4, have oxygen binding properties which are strongly pH and temperature dependent. Addition of ATP or GTP causes a large decrease in the oxygen affinity without affecting the cooperativity of oxygen binding. The effect of GTP is slightly greater than that of ATP. No significant differences were observed in the oxygen equilibria of these two hemoglobins. The red blood cells of S. clarki were found to contain large amounts of both ATP and GTP, with an ATP:GTP ratio of 3:1. Both nucleotides may be important modulators of hemoglobin oxygen affinity in S. clarki, in contrast to the situation in S. gairdneri, in which red blood cell GTP concentrations are considerably lower. The presence of six or possibly seven hemoglobins with identical oxygen binding properties in S. clarki suggests that, to a large extent, the physiological role of multiple hemoglobins in this species involves phenomena not directly related to the oxygen binding properties of the hemoglobins.  相似文献   

11.
The addition of butyric acid to murine erythroleukemic cells (clone T3Cl2) induced the cells to differentiate, producing adult hemoglobin (A, alpha 2,beta 2) and an embryonic hemoglobin (E2, alpha 2Y2). The subsequent addition of hemin to the differentiating cells increased the synthesis of adult hemoglobin four-fold and the synthesis of embryonic hemoglobin two-fold; the relative synthesis of the alpha and beta globins increased more than the y globin. The embryonic hemoglobin was expressed prior to the adult hemoglobin in differentiating cells.  相似文献   

12.
The amino acid sequences of four globins from the land leech, Haemadipsa zeylanica var. japonica, were determined using nucleotide sequencing and protein sequencing. The mature globin-molecules were composed of 146 amino acid residues for M-1 globin, 156 for M-2 globin, 143 for D-1 globin, and 149 for D-2 globin. Alignment of the four kinds of globins by Clustal X revealed 22 invariant amino acids. The four globins were 26–33% identical. A striking feature of amino acid alteration was: the replacement of the E7 distal-His of D-1 globin by phenylalanine because histidine is conserved among the rest of the globins of H. zeylanica, those of other representative species (Lumbricus and Tylorrhynchus) of Annelida and most other hemoglobins. A phylogenetic tree constructed of 18 globin structures including two species of leeches, H. zeylanica (a land leech) and Macrobdella decora (a freshwater leech), T. heterochaetus (a representative species of polychaetes), L. terrestris (a representative species of oligochaetes), and human α and β globins strongly indicated that the leech globins first separated from globin lineage of annelids.  相似文献   

13.
The adult greater Kudu antelope has two hemoglobin components, Hb A and Hb B, with one alpha and two beta chains. The complete amino-acid sequences of these three chains are presented. The two beta chains differ only in one residue at position 16 (Gly----Ser) and may be the product of two allelic genes. The primary structure of the chains was determined by sequencing the tryptic peptides after their isolation from the tryptic digest of the chains by high performance liquid chromatography. The alignment of these peptides was deduced from homology with the chains of bovine hemoglobin. Between the Kudu hemoglobins and those of cattle a high degree of homology was found.  相似文献   

14.
15.
1. The blood of Notothenia coriiceps neglecta (a cold-adapted notothenioid fish, widely distributed in Antarctic waters, and characterized by a relatively low content of erythrocytes and hemoglobin), contains two hemoglobin components, Hb 1 and Hb 2; the amino acid sequences of the beta chain of Hb 1 and Hb 2 are identical. 2. The amino acid sequence of the alpha chain of Hb 2 has been established, thus completing the elucidation of the primary structure of the two hemoglobins.  相似文献   

16.
17.
Hemospan is an acellular hemoglobin-based oxygen therapeutic in clinical trials in Europe and the United States. The product is prepared by site-specific conjugation of maleimide-activated poly(ethylene) glycol (PEG, MW approximately 5500) to human oxyhemoglobin through maleimidation reactions either (1) directly to reactive Cys thiols or (2) at surface Lys groups following thiolation using 2-iminothiolane. The thiolation/maleimidation reactions lead to the addition of approximately 8 PEGs per hemoglobin tetramer. Identification of PEG modified globins by SDS-PAGE and MALDI-TOF reveals a small percentage of protein migrating at the position for unmodified globin chains and the remaining as separate bands representing globin chains conjugated with 1 to 4 PEGs per chain. Identification of PEG modification sites on individual alpha and beta globins was made using reverse-phase HPLC, showing a series of alpha globins conjugated with 0 to 3 PEGs and a series of beta globins conjugated with 0 to 4 PEGs per globin. Mass analysis of tryptic peptides from hemoglobin thiolated and maleimidated with N-ethyl maleimide showed the same potential sites of modification regardless of thiolation reaction ratio, with seven sites identified on beta globins at beta8, beta17, beta59, beta66, beta93, beta95, and beta132 and three sites identified on alpha globins at alpha7, alpha16, and alpha40.  相似文献   

18.
Vertebrate embryos contain hemoglobins composed of globin polypeptides structurally distinct from those of adults. Together with fetal and adult globin chains, these early embryonic globins are encoded by two developmentally regulated multigene families. To facilitate analysis of the structure and evolution of early embryonic alpha-globin genes, we have determined the complete amino acid sequences of the pi and pi' alpha-like globins of the chick embryo. While differing from each other by an alanine/glutamic acid interchange at position 124, this pair of sequences differs from the major and minor adult alpha-globins by 43%. The early embryonic and adult alpha-like sequences appear to have diverged following an ancient gene duplication. We discuss specific amino acid substitutions in functional positions as possible mediators of the reduced Bohr effect and elevated oxygen affinity, which are characteristic of early embryonic hemoglobins.  相似文献   

19.
The amino acid sequences of the alpha chains of hemoglobins purified from Lemur variegatus erythrocytes have been determined. The sequences were determined primarily from peptides generated from treatment of the isolated alpha chains with cyanogen bromide or warm formic acid. The ordering of the peptides from both alpha globins was based on the homology between lemur hemoglobins and those of other primates. The genetic difference at position 15 (Asn vs. Lys) explains the phenotypic characteristic of two hemoglobin species during alkaline electrophoresis. The function of certain residues is discussed in the context of other known sequences. The dispersion of the amino acid changes noted in lemur species falls mostly within the first 75 residues of the alpha chain (exons 1 and 2). The extent of divergence of the L. variegatus alpha-globin chains from the Lemur fulvus alpha globin is similar to that seen for the beta-globin chains of these species. This degree of separation (11-16 residues) is consistent with an extended period of independent evolution by these congeneric species after their divergence.  相似文献   

20.
The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni   总被引:1,自引:0,他引:1  
The blood of the teleost Cygnodraco mawsoni, of the endemic Antarctic family Bathydraconidae, contains a major hemoglobin (Hb 1), accompanied by a minor component (Hb 2, about 5% of total). The two hemoglobins have identical alpha chains and differ by the beta chain. The complete amino acid sequence of the three chains has been elucidated, thus establishing the primary structure of both hemoglobins. The sequences show a 53-65% identity with non-Antarctic poikilotherm fish species; on the other hand, a very high degree of similarity (83-88%) has been found between Hb 1 and the major component of another Antarctic species of a different family. The hemoglobin functional properties relative to oxygen binding have been investigated in intact erythrocytes, 'stripped' hemolysate and purified components of C. mawsoni. The hemoglobins display the Bohr and Root effects, indicating fine regulation of oxygen binding by pH and by the physiological effectors organic phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号