首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Plasma membranes prepared from clonal NB-15 mouse neuroblastoma cells were sequentially incubated with 125I-labeled insulin (10 nM) and the bifunctional cross-linking agent disuccinimidyl suberate. This treatment resulted in the cross-linking of 125I-labeled insulin to a polypeptide that gave an apparent Mr of 135 000 on a sodium dodecyl sulfate-polyacrylamide gel electrophoresed in the presence of 10% β-mercaptoethanol. Affinity labeling of this polypeptide was inhibited by the presence of 5 μM unlabeled insulin, but not by 1 μM unlabeled nerve growth factor. Using the same affinity labeling technique, 125I-labeled nerve growth factor (1 nM) did not label any polypeptide appreciably in the plasma membranes of NB-15 cells but labeled an Mr 145 000 and an Mr 115 000 species in PC-12 rat pheochromocytoma cells. The number of insulin binding sites per cell in the intact differentiated NB-15 mouse neuroblastoma cells was approx. 6-fold greater than that in the undifferentiated NB-15 mouse neuroblastoma cells as measured by specific binding assay, suggesting an increase of the number of insulin receptors in NB-15 mouse neuroblastoma cells during differentiation.  相似文献   

2.
Clonal PC12 rat pheochromocytoma cells were sequentially incubated with 125I-labeled nerve growth factor and the photoreactive bifunctional agent hydroxysuccinimidyl-p-azidobenzoate. This treatment effected the crosslinking of 125I nerve growth factor to a PC12 cell component that exhibits an apparent Mr = 148 000-158 000, and consists of a single polypeptide chain with internal disulfide bonds. The amount of label associated with this Mr = 148 000-158 000 species was proportional to the degree of occupancy of nerve growth factor receptors by 125I-labeled nerve growth factor. Affinity labeling of this species was inhibited by the presence of 0.2 microM unlabeled nerve growth factor during incubation of PC12 cells with 125I nerve growth factor. In membranes prepared from PC12 cells hydroxysuccinimidyl-p-azidobenzoate effected the crosslinking of 125I-labeled nerve growth factor to an Mr = 120 000-130 000 species but not to the Mr = 148 000-158 000 component observed in intact cells. The kinetics of 125I nerve growth factor affinity labeling of the Mr = 148 000-158 000 species closely paralleled the time-course of 125I nerve growth factor association to two kinetically distinct forms of nerve growth factor receptors in PC12 cells. The data indicate that the Mr = 148 000-158 000 species affinity-labeled by 125I nerve growth factor is the native form of a component associated with kinetically different nerve growth factor receptors in PC12 cells.  相似文献   

3.
[125I]Monoiodinated vasoactive intestinal peptide (125I-VIP) was cross-linked with human colonic adenocarcinoma cells (HT29 cells) grown as a monolayer using dithiobis(succinimidylpropionate) as cross-linking reagent. The cross-linked polypeptides were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A major polypeptide of Mr = 67 000 was characterized and it behaved like a high-affinity binding site for VIP according to the following data. The concentration of native VIP (0.5 nM) giving half-maximum inhibition of 125I-VIP covalent cross-linking with this polypeptide was very similar to that giving half-maximum displacement of 125I-VIP on HT 29 cells (0.6 nM). Glucagon or insulin was unable to inhibit the labelling of the Mr-67 000 component. In our experimental conditions neither specific 125I-VIP binding nor covalent labelling was observed with monolayers of Madin Darby canine kidney epithelial cells (MDCK cells) or African green monkey kidney fibroblasts (Vero cells) while the Mr-67 000 polypeptide was also characterized with human rectal adenocarcinoma cells (HRT 18 cells), known to possess the VIP receptor. Preincubation of HT 29 cells with native VIP at 37 degrees C, before 125I-VIP binding and subsequent cross-linking reaction, decreased the labelling of the Mr-67 000 polypeptide up to 80%. Assuming one molecule of 125I-VIP cross-linked per polypeptide, we have characterized, for the first time, a major polypeptide of Mr = 64 000, which belongs to the high-affinity VIP binding site of an intestinal human cell line.  相似文献   

4.
Primary neuronal cultures from fetal rat brain were utilized to investigate the possible role of insulin-like growth factor I (IGF-I) in neuronal growth and differentiation. 125I-IGF-I binding to intact cultured neurons was specific and saturable with an apparent Kd of 7.0 +/- 1.2 nM and a Bmax of 1.8 +/- 0.3 pmol/mg protein. Binding of 125I-IGF-I to neurons was inhibited by IGF-I, followed by IGF-II and insulin. 7 S nerve growth factor, but not beta-nerve growth factor, also inhibited 125I-IGF-I binding. A similar binding site was detected on brain membranes. Affinity cross-linking of 125I-IGF-I to intact cultured neurons revealed, under reducing conditions, a major binding moiety with an Mr of 115,000 and a minor component at Mr 260,000. The former represents a neuronal type of the IGF-I receptor alpha subunit, whereas the latter probably represents an alpha dimer. The Mr = 115,000 binding component for 125I-IGF-I was also present in membranes prepared from postnatal whole brain. In contrast, the binding moiety in cultured glial cells was of Mr = 135,000, which was identical to the IGF-I receptor alpha subunit of placenta. Thus mature brain, despite its cellular heterogeneity, expresses a structural subtype of IGF-I receptor which appears to be unique to differentiated neurons. Moreover, glial and neuronal cultures secreted a polypeptide which specifically bound IGF-I; the apparent Mr of this binding protein was determined by affinity cross-linking to be approximately 35,000. The presence of neuronal IGF-I receptors and binding proteins suggested that IGF-I may exert neurotrophic effects on developing neurons. This possibility was supported by the observation that IGF-I markedly stimulated neuronal RNA synthesis.  相似文献   

5.
Plasma membranes from rat adipocytes and liver and from human placenta have been labeled by covalent cross-linking to membrane-bound 125I-labeled multiplication stimulating activity (125I-MSA) with three different bishydroxysuccinimide esters: disuccinimidyl suberate, disuccinimidyl succinate, and ethyleneglycolyl bis(succinimidyl succinate). Dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiographic analysis of the 125I-MSA-labeled material in the presence of dithiothreitol reveals one single-labeled protein migrating with an apparent Mr = 255,000 regardless of the kind and concentration of cross-linker used. Electrophoresis in the absence of reductant indicates that the affinity-labeled species is not disulfide-linked to any other protein in the native plasma membrane, but contains internal disulfide bonds that compact its structure. The labeling of the Mr = 255,000 species increases with increasing concentrations of 125I-MSA between 0.3 and 3 nM. Labeling is abolished in a competitive manner by nonradioactive MSA but not by similar concentrations of insulin, proinsulin, or epidermal growth factor in all three tissues examined. The unique labeling of this Mr = 225,000 membrane component and its selective inhibition by MSA suggest that this protein is a plasma membrane receptor for MSA.  相似文献   

6.
The cleavable cross-linking reagent dithiobis (succinimidyl propionate) or DTSP was shown to link 125I-labeled vasoactive intestinal peptide (125I-VIP) covalently to its receptors in rat intestinal epithelial membranes. DTSP treatment of 125I-VIP-labeled membranes inhibited the dissociation of VIP-receptor complexes in a way which was dependent on both time and concentration (ED50 = 200 microM). Polyacrylamide gel electrophoresis of membrane proteins revealed three 125I-VIP-protein complexes of Mr 76 000, 36 000 and 17 000. The labeling of those compounds was not observed when: (a) treatment of membranes by DTSP was omitted; (b) the reagent quench, ammonium acetate, was added together with DTSP; (c) DTSP-treated membranes were incubated with 2-mercaptoethanol which reduces the disulfide bond present within DTSP. Labeling of Mr-76 000 and Mr-36 000 complexes was specific in that it could be abolished by native VIP, while the labeling of the Mr-17 000 was not. Densitometric scanning of autoradiographs indicated that: (a) labeling of the Mr-76 000 complex was abolished by low VIP concentrations (0.03--10 nM), by VIP agonists with the relative potency VIP greater than a peptide having N-terminal histidine and C-terminal isoleucine amide greater than secretin, and by GTP (10(-5)--1 mM) but was unaffected by various other peptide hormones; (b) labeling of the Mr-36 000 complex was inhibited by high VIP concentrations (1--300 nM), by VIP agonists at high concentrations but was not affected by GTP and various peptide hormones. Assuming one molecule of 125I-VIP was bound per molecule of protein, two proteins with Mr-73 000 and 33 000 were identified as VIP binding sites. The Mr-73 000 protein displays many characteristics (affinity, specificity, discriminating power toward agonists, sensitivity to GTP regulation) of the high-affinity VIP receptors mediating adenylate cyclase activation. The Mr-33 000 protein displays the characteristics (affinity, specificity) of a low-affinity VIP binding site. This study thus shows the molecular characteristics of the VIP receptor and further argues for the molecular heterogeneity of VIP binding sites.  相似文献   

7.
We have determined optimal conditions for the solubilization of the basic somatomedin (SM) receptor from human placental membranes and for the measurement of the binding of basic SM to the solubilized receptor. Further, we have developed conditions under which the basic SM receptor, in the presence of equivalent amounts of insulin receptor, can be selectively and specifically affinity-labeled with 125I-labeled basic SM, using the cross-linking reagent disuccinimidyl suberate (DSS). Our results with these developed methods indicate that the properties of the soluble basic SM receptor (pH optimum for ligand binding, pH 7 to 9; adsorption to lectin-agarose derivatives; sedimentation coefficient in detergent-sucrose solutions, 11S) closely parallel data previously reported for the insulin receptor. Based on the sedimentation coefficient and the previously estimated Stokes radius of the soluble receptor (7.2 nm), a molecular weight of 402 000 can be calculated for the detergent-receptor complex. Electrophoretic analysis of the basic SM receptor, selectively cross-linked to 125I-labeled basic SM with DSS in the presence of excess unlabeled insulin revealed, under reducing conditions, a major labeled constituent of 140 kdaltons, substantiating our previous work employing a photoaffinity labeling reagent. DSS cross-linking also demonstrated the presence of less intensely labeled components with apparent molecular weights of 54 000, 43 000 and 35 000 but failed to reveal a distinct 90- to 100-kdalton species visualized in parallel experiments with insulin. The 53-kdalton species was not detected in similar experiments with insulin. A specifically labeled basic SM receptor component of 300 kdaltons was also observed under reducing conditions; in the absence of beta-mercaptoethanol, all labeled components migrated in the 300-kdalton range. In comparison, selective DSS labeling of the insulin receptor in the presence of excess basic SM revealed components which, upon electrophoresis under reducing conditions, exhibited apparent molecular weights of 300 000, 140 000, 90 000--100 000, 43 000 and 35 000. The major insulin-labeled component (140 000) comigrated with the major constituent (140 000) selectively labeled with basic SM. Chymotryptic digestion of the receptors selectively DSS labeled with either 125I-labeled insulin or 125I-labeled basic SM yielded quite similar, but distinctive, gel electrophoretic maps. We conclude that the receptors for basic SM and insulin are highly homologous structures, particularly with respect to their glycoprotein nature, their hydrodynamic properties, their disulphide cross-linked composition, and with respect to the size of the major constituent detected by selective affinity labeling. Nonetheless, the detection of electrophoretically distinct labeled receptor substituents upon analysis of specifically labeled material, both before and after chymotryptic cleavage, points to subtle differences between the polypeptide compositions of the two receptors.  相似文献   

8.
A photoreactive derivative of a sulfur-free bovine parathyroid hormone (PTH) analogue, [Nle8,N-epsilon-(4-azido-2-nitrophenyl)Lys13,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NAP-NlePTH), was purified from the products of the reaction of [Nle8,Nle18,Tyr34]bovine PTH-(1-34)-NH2 (NlePTH) with 4-fluoro-3-nitro-phenylazide and was used to identify binding components of the PTH receptor in clonal rat osteosarcoma cells (ROS 17/2.8). The purified analogue, NAP-NlePTH, is a fully active agonist in three different ROS 17/2.8 cell bioassays: 1) specific binding to saturable PTH receptors; 2) stimulation of cyclic AMP accumulation; and 3) inhibition of cellular alkaline phosphatase activity; this analogue gave dose response curves parallel to and 25-33% as potent as its parent molecule, NlePTH. Radioiodinated NAP-NlePTH (125I-labeled NAP-NlePTH) retained maximal receptor-binding potency. Radioligand saturation studies in intact cells showed that the Kd of PTH receptors for the photoligand was slightly less than that for 125I-labeled NlePTH (2.8 and 0.8 nM, respectively), but that the Bmax was essentially identical for both radioligands (8 fmol/10(5) cells). Photoaffinity labeling of ROS 17/2.8 cells revealed several 125I-labeled macromolecular components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One predominant 125I-labeled band, having an apparent Mr of 80,000 daltons (including Mr = 4,347 ligand; hereafter referred to as the Mr = 80,000 protein), was consistently demonstrated in both reducing and nonreducing conditions. Its labeling was completely inhibited by coincubation with NlePTH (10 nM) at 26-fold molar excess to the photoligand, but not by biologically inactive PTH fragments or unrelated hormone. Labeling of several other macromolecular components persisted in the presence of NlePTH (1 microM). Only the labeling of the Mr = 80,000 protein showed saturation kinetics for photoaffinity labeling; the dose of 125I-labeled NAP-NlePTH (0.8 nM) to half-saturate labeling of the Mr = 80,000 protein was close to the Kd (2.8 nM) of specific binding of the photoligand to receptors in intact ROS 17/2.8 cells. Pretreatment of the cells with NlePTH and dexamethasone led to the predicted proportional decrease or increase, respectively, in labeling of the Mr = 80,000 protein. Our data, using a highly purified photoactive derivative of PTH, having carefully defined chemical and biological properties, show a plasma membrane component of Mr = 80,000 in ROS 17/2.8 cells that possesses the affinity, binding capacity, and physiological characteristics of the PTH receptor.  相似文献   

9.
The serine proteinase alpha-thrombin potently stimulates reinitiation of DNA synthesis in quiescent Chinese hamster fibroblasts (CCL39 line). 125I-labeled alpha-thrombin binds rapidly and specifically to CCL39 cells with high affinity (Kd approximately 4 nM). Binding at 37 degrees C was found to remain stable for 6 h or more during which time no receptor down-regulation, ligand internalization and/or degradation could be detected. The structure of alpha-thrombin receptors on CCL39 cells was identified by covalently coupling 125I-alpha-thrombin to intact cells using a homobifunctional cross-linking agent, ethylene glycol bis(succinimidyl succinate). By resolution in sodium dodecyl sulfate polyacrylamide gel electrophoresis we observed the specific labeling of a major alpha-thrombin-binding site of Mr approximately 150 000 revealed as a 125I-alpha-thrombin cross-linked complex of Mr approximately 180 000. Independent of chemical cross-linking, 125I-alpha-thrombin also formed a covalent complex with a minor, 35 000 Mr, membrane component identified as protease nexin. Two derivatives of alpha-thrombin modified at the active site are 1000-fold less than alpha-thrombin for mitogenicity. These two non-mitogenic derivatives bound to cells with similar affinity and maximal binding capacity as native alpha-thrombin, and affinity-labeled the receptor subunit of Mr 150 000. When present in large excess, during incubation of cells with alpha-thrombin, these binding antagonists were ineffective in blocking alpha-thrombin-induced DNA synthesis. These data suggest that the specific 150 000 Mr binding sites that display high affinity for alpha-thrombin do not mediate induction of the cellular mitogenic response.  相似文献   

10.
A corticotropin-releasing factor (CRF) binding protein has been identified based on the chemical cross-linking of ovine [Nle21,m-125I-Tyr32]CRF (125I-oCRF) to bovine anterior pituitary membranes using disuccinimidyl suberate (DSS). The apparent molecular weight of the cross-linked complex determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography was approximately 75,000 and was slightly decreased in its nonreduced state, suggesting the presence of intramolecular disulfide bonds. Subtracting the molecular weight of 125I-oCRF, the binding protein appeared to have a molecular weight of approximately 70,000. The cross-linking was specific since an excess (1 microM) of an unrelated peptide (insulin) did not affect the appearance of the Mr 75,000 band. The concentration of CRF required to inhibit cross-linking by 50% was found to be similar to that determined for bovine pituitary CRF receptors by radioreceptor assay. The nonhydrolyzable GTP analogue 5'-guanylylimidodiphosphate dose dependently inhibited the cross-linking of 125I-oCRF to the Mr 70,000 protein. 50 nM of the inactive CRF analogue, [Ala14]oCRF, had no effect on the cross-linking, an observation which is consistent with this compound's low potencies in bioassays and radioreceptor assays. These results strongly suggest that this Mr 70,000 protein is the biological bovine anterior pituitary CRF receptor.  相似文献   

11.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

12.
The membrane receptor for insulin-like growth factor II (IGF II) has been purified to near homogeneity from rat placenta by chromatography of crude plasma membranes solubilized in Triton X-100 on agarose-immobilized IGF II. Elution of the IGF II receptor from the matrix at pH 5.0 in the presence of 1.5 M NaCl resulted in a receptor purification of 1100-fold from isolated plasma membranes, or 340-fold from the Triton extract with an average yield of about 50% in five separate purifications. Analysis of 125I-IGF II binding to the solubilized receptor in the Triton extract and in purified form by the method of Scatchard demonstrated no change in receptor affinity (Kd = 0.72 nM). Sodium dodecyl sulfate electrophoresis of the purified receptor showed one major band at Mr = 250,000 with only minor contamination. Affinity labeling of the receptor in isolated placenta membranes and in purified form using 125I-IGF II and the cross-linking agent disuccinimidyl suberate resulted in covalent labeling of only the Mr = 250,000 band. Such labeling was abolished by unlabeled IGF II but was unaffected by insulin, consistent with the previously reported specificity of IGF II receptor (Massague, J., and Czech, M.P. (1982) J. Biol. Chem. 257, 5038-5045). These results establish a one step affinity method for the purification of the type II IGF receptor that is rapid and highly efficient.  相似文献   

13.
H Rehm  H Betz 《The EMBO journal》1983,2(7):1119-1122
beta-Bungarotoxin (beta-BTX) is a snake venom neurotoxin which inhibits neurotransmitter release from different types of nerve terminals. To identify presynaptic membrane components potentially important in neurosecretion, 125I-labeled beta-BTX (mol. wt. 21 000) was cross-linked to a high-affinity binding site in synaptic membrane fractions of chick brain using the photoactivable cross-linker N-succinimidyl-6(4'-azido-2'-nitrophenylamino)-hexanoate. Electrophoretic analysis of the cross-linked membrane proteins under both reducing and non-reducing conditions revealed a single [125I]beta-BTX-polypeptide adduct of apparent mol. wt. 116 000 (+/- 2000). The labeling of this band was prevented under conditions previously shown to inhibit the binding of [125I]beta-BTX to its high-affinity binding site. It is concluded that the cross-linking procedure identified a polypeptide of the presynaptic binding site for beta-BTX, and that this polypeptide has a mol. wt. of 95 000.  相似文献   

14.
The binding of 125I-cholecystokinin-33 (125I-CCK-33) to its receptors on rat pancreatic membranes was decreased by modification of membrane protein sulfhydryl groups. Sulfhydryl modifying reagents also caused an accelerated release of bound 125I-CCK-33 from its receptor. Because of the presence of an essential sulfhydryl group(s) in CCK receptor binding we studied the application of the heterobifunctional (SH,NH2) cross-linker, m-maleimidobenzoyl N-hydroxysuccinimide ester (MBS), to affinity label 125I-CCK-33 binding proteins on rat pancreatic plasma membranes. Analysis of the cross-linked products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed that this heterobifunctional cross-linker affinity labeled a major Mr = 80,000-95,000 protein previously identified as part of the CCK receptor on the basis of affinity labeling using homobifunctional and heterobifunctional photoreactive cross-linkers. Additional proteins of Mr greater than 200,000, and Mr = 130,000-140,000 were affinity labeled using MBS. The efficiency of the cross-linking reaction between 125I-CCK-33 and its membrane binding proteins with MBS was significantly greater than that obtained with NH2-directed homobifunctional reagents such as disuccinimidyl suberate. The efficiency of cross-linking could be dramatically improved by reduction of membrane proteins with low-molecular weight thiols prior to binding and cross-linking. The differential labeling patterns of the CCK binding proteins obtained with chemical cross-linkers of similar length but different chemical reactivity underscores the need for caution in predicting native receptor structure from affinity labeling data alone. Using the same pancreatic plasma membrane preparation and 125I-insulin, the Mr = 125,000 alpha-subunit of the insulin receptor was affinity labeled using MBS as cross-linker, demonstrating its utility in identifying other peptide hormone receptors.  相似文献   

15.
Using the combined approaches of affinity labeling and light and electron microscopic autoradiography, we investigated the identification and localization of cholecystokinin (CCK)-binding sites on rat pancreatic acinar cells. To define the molecular properties of the CCK-binding site, we incubated rat pancreatic plasma membranes with 125-I-CCK-33 for 15 min at 23 degrees C followed by washing and cross- linking with disuccinimidyl suberate. Specific labeling of a major Mr 85,000 component was revealed as assessed by SDS PAGE under reducing conditions and autoradiography of the dried gels. Components of Mr greater than 200,000, Mr 130,000-140,000, and, Mr 55,000 were labeled under maximal cross-linking conditions. The labeling of all components was specifically inhibited by CCK-8 in a dose-dependent manner (Kd approximately 9 nM). The Mr 85,000 component had identical electrophoretic mobilities under reducing and nonreducing conditions indicating that it likely does not contain intramolecular disulfide bonds. The larger labeled species may be cross-linked oligomers of this binding protein or complexes between it and neighboring polypeptides. For studies on the distribution of CCK-binding sites, pancreatic acini were incubated with 125I-CCK-33 (0.1 nM) in the absence or presence of CCK-8 (1 microM) for 2 or 15 min at 37 degrees C, washed, and fixed in 2% glutaraldehyde. Quantitative autoradiographic analysis indicated that approximately 60% of the total grains were located within +/- 1 HD (1 HD = 100 nm) of the lateral and basal plasmalemma with little or no labeling of the apical plasmalemma. From these data, it was estimated that each acinar cell possesses at least 5,000-10,000 CCK-binding sites on its basolateral plasmalemma. The remaining grains showed no preferential concentration over the cytoplasm or nucleus. Together, these data indicate that CCK interacts with a Mr 85,000 protein located on the basolateral plasmalemma of the pancreatic acinar cell.  相似文献   

16.
Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18–27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of 125I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used 125I-GRP and chemical cross-linking techniques to characterized the mouse pancreatic BN receptor. After binding of 125I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18–27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of 125I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.  相似文献   

17.
Peptide YY (PYY) receptors were solubilized from rat jejunal crypts using 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid (CHAPS). The binding of [125I-Tyr36]monoiodo-PYY ([125I]PYY) to CHAPS extracts was time-dependent and reversible. The order of potency of PYY-related peptides for inhibiting [125I]PYY binding was PYY greater than neuropeptide Y much greater than pancreatic polypeptide. Scatchard analysis of equilibrium binding data indicated the presence in soluble extracts of a single class of binding sites with a Kd of 1.02 +/- 0.26 nM and a Bmax of 79 +/- 6 fmol/mg protein. Gel filtration on Sephacryl S-300 and ultracentrifugation on sucrose density gradients of soluble [125I] PYY-receptor complexes revealed a single binding component with the following hydrodynamic parameters: Stokes radius, 4.43 nm; s20,w, 2.48 S; Mr, 48,000; frictional ratio, 1.82. Solubilized PYY receptors bound specifically to concanavalin A-, wheat germ agglutinin-, and soybean-coupled Sepharose, supporting their glycoproteic nature. After cross-linking with disuccinimidyl suberate, electrophoresis of covalent [125I]PYY-receptor complexes in membranes or CHAPS extracts revealed the presence of two bands of Mr 49,000 or 28,000 whose labeling was completely abolished by 1 microM unlabeled PYY. The Mr 49,000 band probably corresponded to the Mr 48,000 PYY-receptor complex evidenced by hydrodynamic studies. Assuming one molecule of [125I]PYY (Mr 4,000) was bound per molecule of receptor, these data show that intestinal PYY receptor consists of a Mr 44,000 glycoprotein after solubilization with CHAPS. The availability of this CHAPS-soluble receptor from rat jejunum represents a major step toward the purification of this newly characterized receptor.  相似文献   

18.
Secretin, a gut-brain peptide, elicited cyclic AMP production in a clone of neuroblastoma cells derived from the C1300 mouse tumor. Adenylate cyclase (EC 4.6.1.1) in plasma membranes from these cells was stimulated by secretin greater than vasoactive intestinal peptide greater than peptide histidine isoleucine amide, but not by the related peptides glucagon, gastric inhibitory polypeptide, or human growth hormone releasing factor. Hill coefficients for stimulation approximated one and the response to submaximal peptide concentrations was additive, as expected for hormones competing for a single receptor associated with the enzyme. Binding of 125I-labeled secretin to the neuroblastoma plasma membranes was saturable, time-dependent, and reversible. The KD determined from kinetic and equilibrium binding studies approximated 1 nM. The binding site displayed marked ligand specificity that paralleled that for stimulation of adenylate cyclase. The secretin receptor was regulated by guanine nucleotides, with guanosine 5'-(beta, gamma-imino)-triphosphate being the most potent to accelerate the rate of dissociation of bound secretin. These findings demonstrate the functional association of the secretin receptor with adenylate cyclase in neuronally derived cells.  相似文献   

19.
The receptor for nerve growth factor (NGF) has been purified to near homogeneity from octylglucoside extracts of A875 melanoma cell membranes by the use of repetitive affinity chromatography on NGF-Sepharose. Elution of purified receptor (NGF receptor) was accomplished with 0.15 M NaCl, pH 11.0, containing phosphatidylcholine and octylglucoside. Chromatography on two columns of NGF-Sepharose yielded a 1500-fold purification of the receptor, as assessed by 125I-NGF binding, and permitted recovery of 9% of the total binding activity in the soluble extract. Scatchard analysis of equilibrium binding of 125I-NGF provided similar Kd values for NGF receptors in soluble extracts of A875 membranes (2.2 nM) and with purified NGF receptor (3.1 nM). Examination of NGF receptor after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two major peptides, of Mr = 85,000 and Mr = 200,000. Affinity labeling experiments, done with 125I-NGF and A875 cells, soluble extracts of A875 cell membranes, and purified receptor, show that both of these components of the NGF receptor can be specifically cross-linked to 125I-NGF.  相似文献   

20.
We have developed a membrane binding assay by which we have been able to characterize the interaction between 125I-labeled retinol-binding protein and its receptor in microsome fractions derived from retinal pigment epithelial cells. The binding of retinol-binding protein to the membranes was fast, with a dissociation constant in the range of 31-72 nM, and maximum binding occurred at neutral pH. Receptor binding sites were also found in microsome fractions of liver and kidney, whereas lung and muscle contained few, if any. Chemical cross-linking of retinol-binding protein to the microsomal membranes yielded a major molecular complex of Mr 86,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein responsible for binding of retinol-binding protein was identified as a Mr 63,000 protein using a label transfer cross-linking technique. Further characterization demonstrated that the receptor for retinol-binding protein is a terminally glycosylated membrane protein noncovalently associated with a high molecular weight complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号