首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interferon-induced dynamin-like MxA protein has broad antiviral activity against many viruses, including orthomyxoviruses such as influenza A and Thogoto virus and bunyaviruses such as La Crosse virus. MxA consists of an N-terminal globular GTPase domain, a connecting bundle signaling element, and the C-terminal stalk that mediates oligomerization and antiviral specificity. We previously reported that the disordered loop L4 that protrudes from the compact stalk is a key determinant of antiviral specificity against influenza A and Thogoto virus. However, the role of individual amino acids for viral target recognition remained largely undefined. By mutational analyses, we identified two regions in the C-terminal part of L4 that contribute to an antiviral interface. Mutations in the proximal motif, at positions 561 and 562, abolished antiviral activity against orthomyxoviruses but not bunyaviruses. In contrast, mutations in the distal motif, around position 577, abolished antiviral activity against both viruses. These results indicate that at least two structural elements in L4 are responsible for antiviral activity and that the proximal motif determines specificity for orthomyxoviruses, whereas the distal sequence serves a conserved structural function.  相似文献   

2.
3.
Janzen C  Kochs G  Haller O 《Journal of virology》2000,74(17):8202-8206
MxA is a large, interferon-induced GTPase with antiviral activity against RNA viruses. It forms large oligomers, but whether oligomerization and GTPase activity are important for antiviral function is not known. The mutant protein MxA(L612K) carries a lysine-for-leucine substitution at position 612 and fails to form oligomers. Here we show that monomeric MxA(L612K) lacks detectable GTPase activity but is capable of inhibiting Thogoto virus in transiently transfected Vero cells or in a Thogoto virus minireplicon system. Likewise, MxA(L612K) inhibited vesicular stomatitis virus multiplication. These findings indicate that MxA monomers are antivirally active and suggest that GTP hydrolysis may not be required for antiviral activity. MxA(L612K) is rapidly degraded in cells, whereas wild-type MxA is stable. We propose that high-molecular-weight MxA oligomers represent a stable intracellular pool from which active MxA monomers are recruited.  相似文献   

4.
Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action.  相似文献   

5.
Thogoto and Dhori viruses are tick-borne orthomyxoviruses infecting humans and livestock in Africa, Asia, and Europe. Here, we show that human MxA protein is an efficient inhibitor of Thogoto virus but is inactive against Dhori virus. When expressed in the cytoplasm of stably transfected cell lines, MxA protein interfered with the accumulation of Thogoto viral RNA and proteins. Likewise, MxA(R645), a mutant MxA protein known to be active against influenza virus but inactive against vesicular stomatitis virus, was equally efficient in blocking Thogoto virus growth. Hence, a common antiviral mechanism that is distinct from the antiviral action against vesicular stomatitis virus may operate against both influenza virus and Thogoto virus. When moved to the nucleus with the help of a foreign nuclear transport signal, MxA(R645) remained active against Thogoto virus, indicating that a nuclear step of virus replication was inhibited. In contrast, Dhori virus was not affected by wild-type or mutant MxA protein, indicating substantial differences between these two tick-transmitted orthomyxoviruses. Human MxB protein had no antiviral activity against either virus.  相似文献   

6.
MxA is a key component in the interferon-induced antiviral defense in humans. After viral infections, MxA is rapidly induced and accumulates in the cytoplasm. The multiplication of many RNA viruses,including all bunyaviruses tested so far, is inhibited by MxA. These findings prompted us to express MxA in plants in an attempt to create resistance to tospoviruses. Here, we report the generation of transgenic tobacco plants that constitutively express MxA under the control of the 35S cauliflower mosaic virus promotor. Northern and western blot analysis confirmed the expression of MxA in several transgenic plant lines. MxA expression had no obvious detrimental effects on plant growth and fertility. However, challenge experiments with tomato spotted wilt virus, tomato chlorotic spot virus, and groundnut ringspot virus revealed no increased resistance of MxA-transgenic tobacco plants to tospovirus infections. Neither was the multiplicationof tobacco mosaic virus, cucumber mosaic virus and potato virus Y inhibited in MxA-transgenic plants. The results indicate that the expression of human MxA alone does not enhance virus resistance in planta.  相似文献   

7.
Infections with emerging and re-emerging arboviruses are of increasing concern for global health. Tick-transmitted RNA viruses of the genus Thogotovirus in the Orthomyxoviridae family have considerable zoonotic potential, as indicated by the recent emergence of Bourbon virus in the USA. To successfully infect humans, arboviruses have to escape the restrictive power of the interferon defense system. This is exemplified by the high sensitivity of thogotoviruses to the antiviral action of the interferon-induced myxovirus resistance protein A (MxA) that inhibits the polymerase activity of incoming viral ribonucleoprotein complexes. Acquiring resistance to human MxA would be expected to enhance the zoonotic potential of these pathogens. Therefore, we screened a panel of 10 different thogotovirus isolates obtained from various parts of the world for their sensitivity to MxA. A single isolate from Nigeria, Jos virus, showed resistance to the antiviral action of MxA in cell culture and in MxA-transgenic mice, whereas the prototypic Sicilian isolate SiAr126 was fully MxA-sensitive. Further analysis identified two amino acid substitutions (G327R and R328V) in the viral nucleoprotein as determinants for MxA resistance. Importantly, when introduced into SiAr126, the R328V mutation resulted in complete MxA escape of the recombinant virus, without causing any viral fitness loss. The escape mutation abolished viral nucleoprotein recognition by MxA and allowed unhindered viral growth in MxA-expressing cells and in MxA-transgenic mice. These findings demonstrate that thogotoviruses can overcome the species barrier by escaping MxA restriction and reveal that these tick-transmitted viruses may have a greater zoonotic potential than previously suspected.  相似文献   

8.
The innate immune response, and in particular the alpha/beta interferon (IFN-alpha/beta) system, plays a critical role in the control of viral infections. Interferons alpha and beta exert their antiviral effects through the induction of hundreds of interferon-induced (or -stimulated) genes (ISGs). While several of these ISGs have characterized antiviral functions, their actions alone do not explain all of the effects mediated by IFN-alpha/beta. To identify additional IFN-induced antiviral molecules, we utilized a recombinant chimeric Sindbis virus to express selected ISGs in IFN-alpha/beta receptor (IFN-alpha/betaR)(-/-) mice and looked for attenuation of Sindbis virus infection. Using this approach, we identified a ubiquitin homolog, interferon-stimulated gene 15 (ISG15), as having antiviral activity. ISG15 expression protected against Sindbis virus-induced lethality and decreased Sindbis virus replication in multiple organs without inhibiting the spread of virus throughout the host. We establish that, much like ubiquitin, ISG15 requires its C-terminal LRLRGG motif to form intracellular conjugates. Finally, we demonstrate that ISG15's LRLRGG motif is also required for its antiviral activity. We conclude that ISG15 can be directly antiviral.  相似文献   

9.
MxA is a GTPase that accumulates to high levels in the cytoplasm of interferon-treated human cells. Expression of MxA cDNA confers to transfected cell lines a high degree of resistance against several RNA viruses, including influenza, measles, vesicular stomatitis, and Thogoto viruses. We have now generated transgenic mice that express MxA cDNA in the brain and other organs under the control of a constitutive promoter. Embryonic fibroblasts derived from the transgenic mice were nonpermissive for Thogoto virus and showed reduced susceptibility for influenza A and vesicular stomatitis viruses. The transgenic animals survived challenges with high doses of Thogoto virus by the intracerebral or intraperitoneal route. Furthermore, the transgenic mice were more resistant than their nontransgenic littermates to intracerebral infections with influenza A and vesicular stomatitis viruses. These results demonstrate that MxA is a powerful antiviral agent in vivo, indicating that it may protect humans from the deleterious effects of infections with certain viral pathogens.  相似文献   

10.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

11.
Alpha/beta interferons (IFN-alpha/beta) are key mediators of innate immunity and important modulators of adaptive immunity. The mechanisms by which IFN-alpha/beta are induced are becoming increasingly well understood. Recent studies showed that Toll-like receptors 7 and 8 expressed by plasmacytoid dendritic cells (pDCs) mediate the endosomal recognition of incoming viral RNA genomes, a process which requires myeloid differentiation factor 88 (MyD88). Here we investigate the requirements for virus-induced IFN-alpha/beta production in cultures of bone marrow-derived murine myeloid DCs (mDCs). Using recombinant Semliki Forest virus blocked at different steps in the viral life cycle, we show that replication-defective virus induced IFN-alpha/beta in mDCs while fusion-defective virus did not induce IFN-alpha/beta. The response to replication-defective virus was largely intact in MyD88-/- mDC cultures but was severely reduced in mDC cultures from mice lacking IFN regulatory factor 3. Our observations suggest that mDCs respond to incoming virus via a pathway that differs from the fusion-independent, MyD88-mediated endosomal pathway described for the induction of IFN-alpha/beta in pDCs. We propose that events during or downstream of viral fusion, but prior to replication, can activate IFN-alpha/beta in mDCs. Thus, mDCs may contribute to the antiviral response activated by the immune system at early time points after infection.  相似文献   

12.
Human MxA protein accumulates in the cytoplasm of interferon-treated cells and inhibits the multiplication of several RNA viruses, including Thogoto virus (THOV), a tick-borne orthomyxovirus that transcribes and replicates its genome in the cell nucleus. The antiviral mechanism of MxA was investigated by using two alternative minireplicon systems in which recombinant viral ribonucleoprotein complexes (vRNPs) of THOV were reconstituted from cloned cDNAs. A chloramphenicol acetyltransferase reporter minigenome RNA was expressed either by T7 RNA polymerase in the cytoplasm of transfected cells or, alternatively, by RNA polymerase I in the nucleus. The inhibitory effect of MxA was studied in both cellular compartments by coexpressing wild-type MxA or TMxA, an artificial nuclear form of MxA. Our results indicate that both MxA proteins recognize the assembled vRNP rather than the newly synthesized unassembled components. The present findings are consistent with previous data which indicated that cytoplasmic MxA prevents transport of vRNPs into the nucleus, whereas nuclear MxA directly inhibits the viral polymerase activity in the nucleus.  相似文献   

13.
Hepatitis B virus (HBV) replication is inhibited in a noncytopathic manner by alpha/beta interferon (IFN-alpha/beta) and IFN-gamma. We demonstrate here that inhibitors of cellular proteasome activity can block this antiviral effect. These results suggest that a critical component of the IFN-induced antiviral response may be the proteasome-dependent degradation of viral or cellular proteins that are required for HBV replication.  相似文献   

14.
Viruses and viral components can be potent inducers of alpha/beta interferons (IFN-alpha/beta). In culture, IFN-alpha/beta prime for their own expression, in response to viruses, through interferon regulatory factor 7 (IRF-7) induction. The studies presented here evaluated the requirements for functional IFN receptors and the IFN signaling molecule STAT1 in IFN-alpha/beta induction during infections of mice with lymphocytic choriomeningitis virus (LCMV). At 24 h after infection, levels of induced IFN-alpha/beta in serum were reduced 90 to 95% in IFN-alpha/beta receptor-deficient (IFN-alpha/betaR(-/-)) and STAT1(-/-) mice compared to those in wild-type mice. However, at 48 h, these mice showed elevated expression in the serum whereas IFN-alpha/beta levels were still reduced >75% in IFN-alpha/betagammaR(-/-) mice even though the viral burden was heavy. Levels of IFN-beta, IFN-alpha4, and non-IFN-alpha4 subtype mRNA expression correlated with IFN-alpha/beta bioactivity, and all IFN-alpha/beta subtypes were coincidentally detectable. IRF-7 mRNA was induced under conditions of IFN-alpha/beta production, including late production in IFN-alpha/betaR(-/-) mice. These data demonstrate that the presence of the virus alone is not sufficient to induce IFN-alpha/beta during LCMV infection in vivo. Instead, autocrine amplification through the IFN-alpha/betaR is necessary for optimal induction. In the absence of a functional IFN-alpha/betaR, however, alternative mechanisms, independent of STAT1 but requiring a functional IFN-gammaR, take over.  相似文献   

15.
Although the use of IFN-alpha in combination with ribavirin has improved the treatment efficacy of chronic hepatitis C virus (HCV) infection, 20-50% of patients still fail to eradicate the virus depending on the HCV genotype. Recently, overexpression of HCV core protein has been shown to inhibit IFN signaling and induce SOCS-3 expression. Aim of this study was to examine the putative role of SOCS proteins in IFN resistance. By Western blot analysis, a 4-fold induction of STAT-1/3 phosphorylation by IFN-alpha was observed in mock-transfected HepG2 clones. In contrast, IFN-induced STAT-1/3 phosphorylation was considerably downregulated by SOCS-1/3 overexpression. In mock-transfected cells, IFN-alpha induced 2',5'-OAS and myxovirus resistance A (MxA) promoter activity 40- to 80-fold and 10- to 35-fold, respectively, and this effect was abrogated in SOCS-1/3 overexpressing cells. As detected by Northern blot technique, IFN-alpha potently induced 2',5'-OAS and MxA mRNA expression in the control clones. Overexpression of SOCS-1 completely abolished both 2',5'-OAS and MxA mRNA expression, whereas SOCS-3 mainly inhibited 2',5'-OAS mRNA expression. Our results demonstrate that SOCS-1 and SOCS-3 proteins inhibit IFN-alpha-induced activation of the Jak-STAT pathway and expression of the antiviral proteins 2',5'-OAS and MxA. These data suggest a potential role of SOCS proteins in IFN resistance during antiviral treatment.  相似文献   

16.
17.
Hantaviruses represent important human pathogens and can induce hemorrhagic fever with renal syndrome (HFRS), which is characterized by endothelial dysfunction. Both pathogenic and nonpathogenic hantaviruses replicate without causing any apparent cytopathic effect, suggesting that immunopathological mechanisms play an important role in pathogenesis. We compared the antiviral responses triggered by Hantaan virus (HTNV), a pathogenic hantavirus associated with HFRS, and Tula virus (TULV), a rather nonpathogenic hantavirus, in human umbilical vein endothelial cells (HUVECs). Both HTNV- and TULV-infected cells showed increased levels of molecules involved in antigen presentation. However, TULV-infected HUVECs upregulated HLA class I molecules more rapidly. Interestingly, HTNV clearly induced the production of beta interferon (IFN-beta), whereas expression of this cytokine was barely detectable in the supernatant or in extracts from TULV-infected HUVECs. Nevertheless, the upregulation of HLA class I on both TULV- and HTNV-infected cells could be blocked by neutralizing anti-IFN-beta antibodies. Most strikingly, the antiviral MxA protein, which interferes with hantavirus replication, was already induced 16 h after infection with TULV. In contrast, HTNV-infected HUVECs showed no expression of MxA until 48 h postinfection. In accordance with the kinetics of MxA expression, TULV replicated only inefficiently in HUVECs, whereas HTNV-infected cells produced high titers of virus particles that decreased after 48 h postinfection. Both hantavirus species, however, could replicate equally well in Vero E6 cells, which lack an IFN-induced MxA response. Thus, delayed induction of antiviral MxA in endothelial cells after infection with HTNV could allow viral dissemination and contribute to the pathogenesis leading to HFRS.  相似文献   

18.
19.
Interferon-induced Mx proteins in antiviral host defense   总被引:7,自引:0,他引:7  
Haller O  Staeheli P  Kochs G 《Biochimie》2007,89(6-7):812-818
  相似文献   

20.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号