首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organotellurium compounds have been synthesized since 1840, but pharmacological and toxicological studies about them are still incipient. Therefore, the objective of this study was to verify the effect of acute administration of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in the brain of 30-day-old rats. Animals were treated intraperitoneally with a single dose of the organotellurium (125, 250, or 500 μg/kg body weight) and sacrificed 60 min after the injection. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) formation, and hydroxyl radical production were measured in the brain. The organotellurium enhanced TBARS in the cerebral cortex and the hippocampus, and increased protein damage (carbonyl) in the cerebral cortex and the cerebellum. In contrast, the compound provoked a reduced loss of thiol groups measured by the sulfhydryl assay in all the tissues studied. Furthermore, the activity of the antioxidant enzyme CAT was reduced by the organochalcogen in the cerebral cortex and the cerebellum, and the activity of SOD was inhibited in all the brain tissues. Moreover, NO production was increased in the cerebral cortex and the cerebellum by this organochalcogen, and hydroxyl radical formation was also enhanced in the cerebral cortex. Our findings indicate that this organotellurium compound induces oxidative stress in the brain of rats, corroborating that this tissue is a potential target for organochalcogen action.  相似文献   

2.
Poly(ADP-ribose) polymerase-1 (PARP-1, EC 2.4.2.30), a DNA-bound enzyme, plays a key role in genome stability, but after overactivation can also be responsible for cell death. The aim of the present study was to investigate PARP-1 activity in the hippocampus, brain cortex, striatum and cerebellum in adult (4 months) and aged (24 months) specific pathogen free Wistar rats and to correlate it with PARP-1 protein level and p53 expression. Moreover, the response of PARP-1 in adult and aged hippocampus to oxidative/genotoxic stress was evaluated. Our data indicated a statistically significant enhancement of PARP-1 activity in aged hippocampus and cerebral cortex comparing to adults without statistically significant changes in PARP-1 protein level. The expression of p53 mRNA was elevated in all aged brain parts with the exception of the cerebral cortex. Our data suggest that enhancement of PARP-1 activity and p53 expression in aged brain may indicate higher DNA damage. Our data also indicate that during excessive oxidative/genotoxic stress there is no response of PARP-1 activity in aged hippocampus in contrast to a significant enhancement of PARP-1 activity in adults which may have important consequences for the physiology and pathology of the brain.  相似文献   

3.
This study describes, using electron spin resonance spectrometry/spin trapping technique, the increase superoxide dismutase (SOD) activity in the mitochondrial and cytosolic fraction of the cortex, midbrain, pons-medulla oblongata and cerebellum, and in thiobarbituric acid-reactive substances (TBARS) in the cortex, cerebellum and hippocampus of the aged rats. The results show that corresponding to the increased life span and improved physical conditions observed after peroral long-term treatment with Bio-catalyzer, a commercial natural fermented health food supplement marketed in Japan and in the Philippines and earlier reported to be a hydroxyl radical scavenger with weaker scavenging activity on superoxide radical (O 2 ), SOD which is involved in the metabolic degradation of O 2 was further increased, whereas TBARS decreased. These findings suggest that the increased SOD activity in the brain as a defense mechanism against age-related accumulation of reactive oxygen species, in particular superoxide radicals, was enhanced with Biocatalyzer treatment while age-related peroxidation of neuronal membrane, as measured by TBARS, was decreased.  相似文献   

4.
In this study, the effect of aging on nitric oxide synthases (NOS) was investigated in homogenates and cytosolic fractions from hippocampus, brain cortex and cerebellum of adult, old adult and old Wistar rats (3-4, 14, and 24 months old, respectively). Our results indicate the enhancement of Ca(2+) and calmoduline-dependent NOS activity in all investigated aged brain parts. Significantly higher NOS activity was found in the cerebellum.In the absence of Ca(2+) or in the presence of N-nitro-L-arginine (NNLA) the activity of NOS was absent. Inhibitor of constitutive NOS isoforms which preferentially inhibits neuronal NOS (nNOS), 7-nitroindazole, decreased NOS activity by 60 and 75% in adult and aged brain, respectively. However, using RT-PCR a significantly lower amount of mRNA for nNOS was detected in hippocampus. The ratio of NOS activity to nNOS mRNA was significantly higher in hippocampus and cerebellum of aged brain. No expression of the gene for inducible NOS was observed in adult and aged brain.These results indicate that probably nNOS is responsible for higher NOS activity in aged brain. Our data suggest that alteration of nNOS phosphorylation state may be responsible for the activation of NOS in aged brain. The down-regulation of nNOS mRNA expression may be an adaptive mechanism that protects the brain against excessive NO release.  相似文献   

5.
It is suggested that the fibrillar amyloid beta peptide (A beta) in brain plays a direct role in neurodegeneration in Alzheimer's disease, probably through activation of reactive oxygen species formation. Free radicals and numerous neurotoxins elicit DNA damage that subsequently activates poly(ADP-ribose) polymerase (PARP, EC 2.4.2.30). In this study the effect of neurotoxic fragment (25-35) of full length A beta peptide on PARP activity in adult and aged rat hippocampus was investigated. In adult (4 month old) rat hippocampus the A beta 25-35 peptide significantly enhanced PARP activity by about 80% but had no effect on PARP activity in cerebral cortex and in hippocampus from aged (24-27 month old) rats. The effect of A beta peptide was reduced by half by the nitric oxide synthase inhibitor N-nitro-L-arginine. Stimulation of glutamate receptor(s) itself enhanced PARP activity by about 80% in adult hippocampus. However, A beta 25-35 did not exert any additional stimulatory effect. These results indicate that A beta, through NO and probably other free radicals, induces activation of DNA bound PARP activity exclusively in adult but not in aged hippocampus.  相似文献   

6.
Nicotinamide phosphoribosyltransferase (NAMPT) is a key enzyme for nicotinamide adenine dinucleotide (NAD) biosynthesis, and can be found either intracellularly (iNAMPT) or extracellularly (eNAMPT). Studies have shown that both iNAMPT and eNAMPT are implicated in aging and age-related diseases/disorders in the peripheral system. However, their functional roles in aged brain remain to be established. Here we showed that upon aging, NAMPT level increased in serum but decreased in brain, decreased in cortex and hippocampus but remained unchanged in cerebellum and striatum in brain, and increased in microglia but likely decreased in neuron. Accordingly, total NAD (tNAD) level significantly decreased in hippocampus, cerebellum and striatum in aged brain. Application of recombinant NAMPT, mimicking the elevated serum NAMPT level, enhanced the susceptibility of cerebral endothelial cells to ischemic injury, while inhibition of iNAMPT by FK866, a specific inhibitor, reduced intracellular NAD level and induced neuronal death. Taken together, we have revealed a region- and cell-specific change of NAMPT level in brain and serum upon aging, deduced its potential consequences, which suggests that NAMPT is a regulatory factor in aging and age-related brain diseases.  相似文献   

7.
Selenium (Se) is an essential mineral for mammals. It is a nutrient related to the complex metabolic and enzymatic functions. Although Se has important physiological functions in the cells, organic compounds of Se can be extremely toxic, and may affect the central nervous system. This study aims to investigate the effect of the chronic treatment with the vinyl chalcogenide 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one on some parameters of oxidative stress in the brain of rats. Animals received the vinyl chalcogenide (125, 250 or 500 μg/kg body weight) intraperitoneally once a day during 30 days. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in the brain. Results showed that the organoselenium enhanced TBARS in the cerebral cortex of rats but the compound was not able to change carbonyl levels. Furthermore, the organoselenium reduced thiol groups measured by the sulfhydryl assay in all tissues studied. The activity of the antioxidant enzyme CAT was increased by the organochalcogen in the cerebral cortex and in the cerebellum, and the activity of SOD was increased in the hippocampus. On the other hand, the activity of the antioxidant enzyme GPx was reduced in all brain structures. Our findings indicate that this organoselenium compound induces oxidative stress in different brain regions of rats, corroborating to the fact that this tissue is a potential target for organochalcogen action.  相似文献   

8.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

9.
The effect of a Chinese herbal medicine Sho-saiko-to-go-keishi-ka-shakuyaku-to (TJ-960) on the brain choline acetyltransferase (CAT) activity was studied in adult (3.5 months of age) and aged (24 months of age) rats. After oral administration of 5% TJ-960 solution for 3 months, CAT activity in the hippocampus, pons-medulla oblongata and striatum of aged rats was significantly lower than that of adult rats. CAT activity in the cerebellum, however, was significantly higher in the aged rats, as compared to the adult rats. TJ-960 significantly increased CAT activity in the hippocampus and striatum of aged rats, but did not affect the activity of the enzyme in the adult rat brain.  相似文献   

10.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

11.
Vorbrodt  A.W.  Dobrogowska  D.H.  Meeker  H.C.  Carp  R.I. 《Brain Cell Biology》1999,28(9):711-719
Distribution of glucose transporter (GLUT-1) in brain microvascular endothelia, representing the anatomic site of the blood-brain barrier (BBB), was studied in adult, physiologically aged, senescence-accelerated prone (SAMP8) and in scrapie-infected mice. Sections of tissue samples obtained from four brain regions (cerebral cortex, hippocampus, cerebellum, and olfactory bulb) and embedded in Lowicryl K4M were exposed to anti-GLUT-1 antiserum followed by gold-labeled secondary antibody. Labelling density was recorded over luminal and abluminal plasma membranes of the microvascular endothelial cells. We found that the density of immunosignals for GLUT-1 in the cerebral cortex showed a tendency toward insignificant diminution according to the following gradation-adult > SAMP8 > scrapie > aged mice-whereas in the hippocampus, this gradation was slightly different: adult > aged > scrapie > SAMP8 mice. In the cerebellum, immunolabelling was insignificantly diminished in aged mice, whereas it was significantly decreased in scrapie-infected and SAMP8 mice. The intensity of labelling of the vascular endothelium in the olfactory bulb was significantly lower than that in other brain regions, showing a slight decrease in the following sequence: adult > aged > scrapie > SAMP8 mice. These findings suggest that the process of aging as well as of related neurodegenerative disease affects unequally the distribution of GLUT-1 in the vasculature of different brain regions.  相似文献   

12.
Aluminum (Al), oxidative stress and impaired cholinergic functions have all been related to Alzheimer's disease (AD). The present study evaluates the effect of aluminum on acetylcholinesterase (AChE) and lipid peroxidation in the mouse brain. Mice were loaded by gavage with Al 0.1 mmol/kg/day 5 days per week during 12 weeks. The mice were divided into four groups: (1) control; (2) 10 mg/mL of citrate solution; (3) 0.1 mmol/kg of Al solution; (4) 0.1 mmol/kg of Al plus 10 mg/mL of citrate solution. AChE activity was determined in the hippocampus, striatum, cortex, hypothalamus and cerebellum and lipid peroxidation was determined in the hippocampus, striatum and cortex. An increase of AChE activity was observed in the fourth group (Al + Ci) in the hippocampus (36%), striatum (54%), cortex (44%) and hypothalamus (22%) (p<0.01). The third group (Al) presented a decrease of AChE activity in the hypothalamus (20%) and an enhancement in the striatum (27%). Lipid peroxidation, measured by TBARS (thiobarbituric acid reactive substances), was elevated in the hippocampus and cerebral cortex when compared with the control (p < 0.01). The effect of aluminum on AChE activity may be due to a direct neurotoxic effect of the metal or perhaps a disarrangement of the plasmatic membrane caused by increased lipid peroxidation.  相似文献   

13.
The activity of cytochrome c oxidase was studied in aging brain on non-synaptic and intra-synaptic mitochondria from frontal cerebral cortex, hippocampus and striatum of 4, 8, 12, 16, 20 and 24 month-old Sprague-Dawley rats. Specific activities of cytochrome oxidase were significantly higher in light synaptic mitochondria than in non-synaptic or heavy ones at all the ages examined. However, enzyme activity in light mitochondria from cerebral cortex remains unchanged during aging, being increased in hippocampus and striatum. These results indicate that aging affected not only the various cerebral area (macroheterogeneity), but also the different mitochondrial populations (subcellular heterogeneity).  相似文献   

14.
The synucleins are a family of presynaptic proteins that are abundant in neurons and include alpha-, beta, and gamma-synuclein. Alpha-synuclein (ASN) is involved in several neurodegenerative age-related disorders but its relevance in physiological aging is unknown. In the present study we investigated the expression of ASN mRNA and protein in the different brain parts of the adult (4-month-old) and aged (24-month-old) rats by using RT-PCR technique and Western blot, respectively. Our results indicated that mRNA expression and immunoreactivity of ASN is similar in brain cortex, hippocampus and striatum but markedly lower in cerebellum comparing to the other brain parts. Aging lowers ASN mRNA expression in striatum and cerebellum by about 40%. The immunoreactivity of ASN in synaptic plasma membranes (SPM) from aged brain cortex, hippocampus and cerebellum is significantly lower comparing to adult by 39%, 24% and 65%, respectively. Beta-synuclein (BSN) was not changed in aged brain comparing to adult. Age-related alteration of ASN may affect the nerve terminals structure and function.  相似文献   

15.
Effects of exogenous dehydroepiendrosterone (DHEA) administration on the levels of lipid proxidation products, malondialdyde (MDA)-a thiobarbuteric acid reactive substance (TBARS) and 4-hydroxynonenal (4-HNE) in different brain regions viz. cerebral cortex, hippocampus cerebellum, and brain stem of 12 and 22 months old rats were studied. DHEA treatment significantly depressed TBARS and 4-HNE in all the brain regions studied, in both the age group rats. Interestingly, the magnitude of decrease was higher in the 22 months old rats than that in 12 months old rats. The results suggest that older the animal, better will be the response of exogenous DHEA administration against age-related peroxidative products.  相似文献   

16.
The present study was conducted to explore whether or not manganese effect on brain monoamine oxidase (EC 1.4.3.4) is subject to hereditary genetic amplification. Mice of both sexes were given manganese through four generations, and the enzyme activity was measured in the cerebral cortex, cerebellum, hypothalamus and hippocampus of each of the generations except for the third, whose activity we were not in a position to measure. Intrinsic enzyme activity was highest in the cerebellum, and was followed by those in the cerebral cortex and hypothalamus. The activity in the hippocampus was the lowest. Manganese administration greatly stimulated the activity in the cerebellum. However, as generation succeeded, the level of susceptibility to manganese gradually declined. Manganese concentration in pooled suborgan fractions proved to be, in every case, higher in the cerebral cortex, cerebellum and hippocampus and lower in the hypothalamus. No indication was found that the manganese effect is genetically inherited.  相似文献   

17.
18.
Effects of ageing on Na+,K(+)-ATPase activity in crude synaptosomal fractions from the rat brain parietal cortex, hippocampus, striatum and thalamus has been studied. From 12 months to 24 months, a progressive decline in enzyme activity in the parietal cortex, hippocampus and striatum was found which correlated with increase in lipid peroxidation in the three brain regions. In the thalamus, ageing did not affect the enzyme activity and lipid peroxidation. Age-related decline in multiple unit action potentials was also observed in two brain regions, viz. hippocampus and parietal cortex. Statistical correlations calculated by Pearson's correlation coefficient showed that decline in Na+,K(+)-ATPase activity correlated to decline in multiple unit action potentials. There was rise in lipid peroxidation also and the data indicate that age-related changes in lipid peroxidation and Na+,K(+)-ATPase activity contribute to the deterioration of electrophysiological activity.  相似文献   

19.
花粉制剂对脑衰老动物各脑区的SOD和NO水平的影响   总被引:2,自引:0,他引:2  
采用 D-半乳糖建立脑衰老动物模型 ,观察服用花粉制剂前后对脑衰老模型动物不同脑区组织中超氧化物歧化酶 ( SOD)活性、一氧化氮 ( NO)水平的影响。结果表明花粉制剂能明显升高脑衰老动物某些脑区 SOD活性和降低脑衰老动物某些脑区 NO水平。研究结果提示花粉制剂具有延缓衰老和增强记忆力等作用 ,其机制可能与其促进自由基的清除及减少 NO释放有关。  相似文献   

20.
In this study we evaluated the effect of quercetin on D-galactose-induced aged mice using the Morris water maze (MWM) test. Based on the free radical theory of aging,experiments were performed to study the possible biochemical mechanisms of glutathione (GSH) level and hydroxyl radical (OH-) in the hippocampus and cerebral cortex and the brain tissue enzyme activity of the mice. The results indicated that quercetin can enhance the exploratory behavior,spatial learning and memory of the mice. The effects relate with enhancing the brain functions and inhibiting oxidative stress by quercetin,and relate with increasing the GSH level and decreasing the OH-content. These findings suggest that quercetin can work as a possible natural anti-aging pharmaceutical product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号