首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The theory of constrained sex allocation posits that when a fraction of females in a haplodiploid population go unmated and thus produce only male offspring, mated females will evolve to lay a female-biased sex ratio. I examined evidence for constrained sex ratio evolution in the parasitic hymenopteran Uscana semifumipennis. Mated females in the laboratory produced more female-biased sex ratios than the sex ratio of adults hatching from field-collected eggs, consistent with constrained sex allocation theory. However, the male with whom a female mated affected her offspring sex ratio, even when sperm was successfully transferred, suggesting that constrained sex ratios can occur even in populations where all females succeed in mating. A positive relationship between sex ratio and fecundity indicates that females may become sperm-limited. Variation among males occurred even at low fecundity, however, suggesting that other factors may also be involved. Further, a quantitative genetic experiment found significant additive genetic variance in the population for the sex ratio of offspring produced by females. This has only rarely been demonstrated in a natural population of parasitoids, but is a necessary condition for sex ratio evolution. Finally, matings with larger males produced more female-biased offspring sex-ratios, suggesting positive selection on male size. Because the great majority of parasitic hymenoptera are monandrous, the finding of natural variation among males in their capacity to fertilize offspring, even after mating successfully, suggests that females may often be constrained in the sex allocation by inadequate number or quality of sperm transferred.  相似文献   

2.
In haplodiploid organisms, unmated or sperm depleted females are “constrained” to produce only male progeny. If such constrained females reproduce, the population sex ratio will shift toward males and unconstrained females will be selected to produce more females. Assuming that a female's own time spent constrained is an index of the population-wide level of constrained oviposition, and that constrained and unconstrained females reproduce at the same rate, the proportion of sons that females produce when unconstrained should decrease with increasing time spent constrained. Alternatively, if females cannot measure time spent constrained or if time spent constrained is not an index to the level of constrained oviposition in the population, the proportion of sons among progeny produced when unconstrained should not depend upon time spent constrained and should be female biased to an extent depending upon the average time spent constrained over evolutionary time. To test these predictions, we manipulated the amount of time spent virgin in the parasitoid wasp Aphelinus asychis Walker (Hymenoptera: Aphelinidae) and measured the number of males and females among progeny produced before and after mating. First, we found no interaction between age and age at mating in their effect on fecundity, which suggests that mating does not change fecundity. Second, we found that females mated at 8 days and 15 days produced equal sex ratios after mating but these were slightly more female biased than the sex ratios of females mated at 1 day. This observed “step response” suggests that females may perceive time from emergence to mating as a discrete rather than a continuous variable (i.e., short versus long), or that females do not perceive time per se but assess their age class (i.e., young versus old) at the time of mating.  相似文献   

3.
Sexual selection theory asserts that females are well adapted to sense signals indicating the quality of potential mates. One crucial male quality parameter is functional fertility (i.e. the success of ejaculates in fertilizing eggs). The phenotype-linked fertility hypothesis (PLFH) predicts that functional fertility of males is reflected by phenotypic traits that influence female mate choice. Here, we show for Nasonia vitripennis, a parasitic wasp with haplodiploid sex determination and female-biased sex ratios, that females use olfactory cues to discriminate against sperm-limited males. We found sperm limitation in newly emerged and multiply mated males (seven or more previous matings) as indicated by a higher proportion of sons in the offspring fathered by these males. Sperm limitation correlated with clearly reduced pheromone titres. In behavioural bioassays, females oriented towards higher doses of the synthetic pheromone and were attracted more often to scent marks of males with a full sperm load than to those of sperm-limited males. Our data support the PLFH and suggest that N. vitripennis females are able to decrease the risk of getting constrained to produce suboptimal offspring sex ratios by orienting towards gradients of the male sex pheromone.  相似文献   

4.
Differential dispersal and female-biased sex allocation in a parasitic wasp   总被引:2,自引:0,他引:2  
1. Differential dispersal of males and females from a population is predicted to result in biased sex-allocation decisions, even in the absence of sibmating.
2. Mated Bracon hebetor Say (Hymenoptera: Braconidae) females produce distinctly female-biased sex ratios (≈ 30% male), yet sibmating is not a feature of the mating biology of this species. Therefore the dispersal behaviour of male and female B. hebetor from caged subpopulations was examined.
3. A higher proportion of females than males dispersed from the caged subpopulations. Furthermore, females dispersed earlier than males. This suggests that the level of competition for mates experienced by males is higher than the level of competition for hosts experienced by sisters.
4. Roughly half of the dispersing females left after they had mated. Females generally mate once in their lifetimes, suggesting that competition between brothers for mates may be high.  相似文献   

5.
The oviposition behaviour of mated or virgin females of the parasitic wasp,Apanteles glomeratus L., was investigated. Virgin females laid fewer eggs in a shorter time than did mated females (P<0.01), though the attack ratio and attack time of these 2 female types were the same. Progeny sex ratios of mated females suggested the occurrence of sperm shortage, because old mated females produced clutches of a high male proportion, sometimes consisting of males only. Recopulation of females was also observed, but actual insemination did not occur, and therefore,A. glomeratus females are considered to be fundamentally monogamous.  相似文献   

6.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

7.
Summary Species of parasitic Hymenoptera that manifest female-biased sex ratios and whose offspring mate only with the offspring of the natal patch are assumed to have evolved biased sex ratios because of Local Mate Competition (LMC). Off-patch matings, i.e. outcrossing, are inconsistent with the conditions favouring biased sex ratios because they foster a mating structure approaching panmixia. Such a mating structure favours parents who invest equally in daughters and sons, assuming the production of each sex is of equal cost.Pachycrepoideus vindemiae (Rondani) is a solitary pupal parasitoid of patchily distributed frugivorousDrosophila, whose offspring manifest a female-biased sex ratio. Thus this species appears to manifest a population structure and progeny sex ratio consistent with LMC. However, preliminary observations and subsequent greenhouse experiments suggest that the males participate in off-patch matings and that this propensity is unlikely to be an experimental artefact. FemaleP. vindemiae dispersed from patches in which either the males were lacking (12% of the emigrant females), both resident (sibling) and immigrant males were present (23% of the females), only immigrant males were present (14% of the females), or their opportunity to mate could not be determined (14% of the females). Of the 12% that emigrated from a patch lacking males, an estimated 7% mated at an oviposition site and 5% remained unmated, presumably because they arrived at an oviposition site that lacked males before they were dissected to determine whether they were inseminated. Thus the degree of bias in the sex ratios of the progeny (18% males), coupled with the suggested outcrossing potential from the experiments (26–37%), is inconsistent with the assumptions of LMC or variants of it, i.e. asynchronous brood maturation. Thus the explanation for a biased sex ratio in the offspring ofP. vindemiae remains a conundrum. More importantly,P. vindemiae does not appear to be an isolated example.  相似文献   

8.
Females of the southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae), initiating copulation in a female-biased environment produced relatively more sons than females initiating copulation in a male-biased environment. Although families suffering greater mortality yielded more sons, the difference in offspring sex ratio between treatments was not due to differential mortality by sex since the distribution of family size did not vary between treatments. Female condition, indexed by female size and size of the first egg mass laid, did not vary between treatments and, therefore, apparently did not contribute to the results. Thus, it appears that the stinkbug is capable of facultative sex ratio adjustment in response to the operational sex ratio, increasing the production of sons when males are rare. In nature, overlapping generations and female-biased operational sex ratios may occur; conditions under which selection for sex ratio adjustment is most intense.  相似文献   

9.
Haplodiploid species display extraordinary sex ratios. However, a differential investment in male and female offspring might also be achieved by a differential provisioning of eggs, as observed in birds and lizards. We investigated this hypothesis in the haplodiploid spider mite Tetranychus urticae, which displays highly female-biased sex ratios. We show that egg size significantly determines not only larval size, juvenile survival and adult size, but also fertilization probability, as in marine invertebrates with external fertilization, so that female (fertilized) eggs are significantly larger than male (unfertilized) eggs. Moreover, females with on average larger eggs before fertilization produce a more female-biased sex ratio afterwards. Egg size thus mediates sex-specific egg provisioning, sex and offspring sex ratio. Finally, sex-specific egg provisioning has another major consequence: male eggs produced by mated mothers are smaller than male eggs produced by virgins, and this size difference persists in adults. Virgin females might thus have a (male) fitness advantage over mated females.  相似文献   

10.
The costs and benefits of polyandry are central to understanding the near-ubiquity of female multiple mating. Here, we present evidence of a novel cost of polyandry: disrupted sex allocation. In Nasonia vitripennis, a species that is monandrous in the wild but engages in polyandry under laboratory culture conditions, sexual harassment during oviposition results in increased production of sons under conditions that favour female-biased sex ratios. In addition, females more likely to re-mate under harassment produce the least female-biased sex ratios, and these females are unable to mitigate this cost by increasing offspring production. Our results therefore argue that polyandry does not serve to mitigate the costs of harassment (convenience polyandry) in Nasonia. Furthermore, because males benefit from female-biased offspring sex ratios, harassment of ovipositing females also creates a novel cost of that harassment for males.  相似文献   

11.
Mathematical models suggest that reproducing females may benefit by facultatively adjusting their relative investment into sons vs. daughters, in response to population‐wide shifts in operational sex ratio (OSR). Our field studies on viviparous alpine skinks (Niveoscincus microlepidotus) document such a case, whereby among‐ and within‐year shifts in OSR were followed by shifts in sex allocation. When adult males were relatively scarce, females produced male‐biased litters and larger sons than daughters. The reverse was true when adult males were relatively more common. That is, females that were courted and mated by few males produced mainly sons (and these were larger than daughters), whereas females that were courted and mated by many males produced mainly daughters (and these were larger than sons). Maternal body size and condition also covaried with sex allocation, and the shifting pattern of sexual size dimorphism at birth may reflect these correlated effects rather than a discrete component of an evolved sex‐allocation strategy.  相似文献   

12.
In the Hymenoptera, males develop as haploids from unfertilized eggs and females develop as diploids from fertilized eggs. In species with complementary sex determination (CSD), however, diploid males develop from zygotes that are homozygous at a highly polymorphic sex locus or loci. We investigated mating behavior and reproduction of diploid males of the parasitoid wasp Cotesia vestalis (C. plutellae), for which we recently demonstrated CSD. We show that the behavior of diploid males of C. vestalis is similar to that of haploid males, when measured as the proportion of males that display wing fanning, and the proportion of males that mount a female. Approximately 29% of diploid males sired daughters, showing their ability to produce viable sperm that can fertilize eggs. Females mated to diploid males produced all-male offspring more frequently (71%) than females mated to haploid males (27%). Daughter-producing females that had mated to diploid males produced more male-biased sex ratios than females mated to haploid males. All daughters of diploid males were triploid and sterile. Three triploid sons were also found among the offspring of diploid males. It has been suggested that this scenario, that is, diploid males mating with females and constraining them to the production of haploid sons, has a large negative impact on population growth rate and secondary sex ratio. Selection for adaptations to reduce diploid male production in natural populations is therefore likely to be strong. We discuss different scenarios that may reduce the sex determination load in C. vestalis.  相似文献   

13.
To understand genetic and phenotypic constraints on the sex ratio in a parasitic wasp that attacks fly pupae, I carried out a laboratory study of sex ratio variability in five strains of Muscidifurax raptor (Hymenoptera: Pteromalidae). I manipulated the environment through combinations of temperature and day length, and the numbers of females that attack a group of hosts. The change of phenotype in each strain over the range of environmental conditions describes the norm of each reaction for that strain, and measures how a strain responds to environmental variation to create phenotypic variability. Sex ratio in parasitic wasps is a complex trait that has several components—the numbers of eggs laid by an ovipositing wasp and the fraction of eggs that are fertilized (female). Further, sex ratio may be influenced by a female's reaction to other females exploiting the same hosts (superparasitism). I found no strain-environment interactions in either sex ratio or fecundity when I varied environmental conditions. Although strains differed in sex ratio and fecundity, all strains produced a more female-biased sex ratio and had higher fecundity when temperature and day length increased. Sex ratio and fecundity were phenotypically correlated, and strains with greater fecundity also produced a more female-biased sex ratio. All strains facultatively shifted sex ratio toward a higher fraction of males with increasing female density, despite apparent differences in superparasitism among strains. Males and females survived equally during development, so that mortality differences among strains and across environments could not account for sex ratio variability. This study indicates that sex ratio variability among strains is constrained by the correlation between sex ratio and fecundity, and that strains display similar facultative shifts in sex ratio as female density increases because sex ratio shifts are insensitive to differing levels of superparasitism.  相似文献   

14.
Modification of offspring sex ratios in response to parental quality is predicted when the long-term fitness returns of sons and daughters differ. One factor that may influence a mother's sex allocation decision is the quality (or attractiveness) of her mate. We investigated whether the sex ratios of offspring produced by female Drosophila melanogaster are biased with respect to the age of the males to which they are mated, and whether there is an adaptive basis for this phenomenon. We found that females mated to old males (13 d post-eclosion) initially produced a greater proportion of daughters than did females mated to young males (1 d post-eclosion). This pattern does not appear to be due to a systematic difference in the numbers or mortality of the X- and Y-bearing sperm originating from old and young fathers, as the overall sex ratios of all offspring produced from a single copulation did not differ between broods fathered by the two types of males. The sons of older males fared worse in competitive mating assays than did the sons of younger males, while daughters of old and young males were of comparable fitness. These results suggest that there is an adaptive basis for the observed sex ratio modification.  相似文献   

15.
Across animal taxa, reproductive success is generally more variable and more strongly dependent upon body condition for males than for females; in such cases, parents able to produce offspring in above‐average condition are predicted to produce sons, whereas parents unable to produce offspring in good condition should produce daughters. We tested this hypothesis in the collared flycatcher (Ficedula albicollis) by cross‐fostering eggs among nests and using the condition of foster young that parents raised to fledging as a functional measure of their ability to produce fit offspring. As predicted, females raising heavier‐than‐average foster fledglings with their social mate initially produced male‐biased primary sex ratios, whereas those raising lighter‐than‐average foster fledglings produced female‐biased primary sex ratios. Females also produced male‐biased clutches when mated to males with large secondary sexual characters (wing patches), and tended to produce male‐biased clutches earlier within breeding seasons relative to females breeding later. However, females did not adjust the sex of individuals within their clutches; sex was distributed randomly with respect to egg size, laying order and paternity. Future research investigating the proximate mechanisms linking ecological contexts and the quality of offspring parents are able to produce with primary sex‐ratio variation could provide fundamental insight into the evolution of context‐dependent sex‐ratio adjustment.  相似文献   

16.
17.
Polygynous parasitoid males may be limited by the amount of sperm they can transmit to females, which in turn may become sperm limited. In this study, I tested the effect of male mating history on copula duration, female fecundity, and offspring sex ratio, and the likelihood that females will have multiple mates, in the gregarious parasitoid Cephalonomia hyalinipennis Ashmead (Hymenoptera: Bethylidae: Epyrinae), a likely candidate for sperm depletion due to its local mate competition system. Males were eager to mate with the seven females presented in rapid succession. Copula duration did not differ with male mating history, but latency before a first mating was significantly longer than before consecutive matings. Male mating history had no bearing on female fecundity (number of offspring), but significantly influenced offspring sex ratio. The last female to mate with a given male produced significantly more male offspring than the first one, and eventually became sperm depleted. In contrast, the offspring sex ratio of first‐mated females was female biased, denoting a high degree of sex allocation control. Once‐mated females, whether sperm‐depleted or not, accepted a second mating after a period of oviposition. Sperm‐depleted females resumed production of fertilized eggs after a second mating. Young, recently mated females also accepted a second mating, but extended in‐copula courtship was observed. Carrying out multiple matings in this species thus seems to reduce the cost of being constrained to produce only haploid males after accepting copulation with a sperm‐depleted male. I discuss the reproductive fitness costs that females experience when mating solely with their sibling males and the reproductive fitness gain of males that persist in mating, even when almost sperm‐depleted. Behavioural observations support the hypothesis that females monitor their sperm stock. It is concluded that C. hyalinipennis is a species with a partial local mating system.  相似文献   

18.
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis.  相似文献   

19.
Comparative approaches in contemporary primate behavioral ecology have tended to emphasize the deterministic properties of stochastic ecological variables. Yet, primate responses to ecological fluctuations may be mediated by the interactions among demographic processes at the levels of individuals, groups, and populations. In this paper I examine long-term data collected from June 1982–July 1998 on one expanding group of muriquis (Brachyteles arachnoides) at the Estação Biologica de Caratinga, Minas Gerais, Brazil to explore the demographic and life history correlates of reproductive seasonality and skewed infant sex ratios. Variation in the size of annual birth cohorts (≥2 infants) was positively related to variation in the annual distribution of births (r s=0.96,n=10,p<0.01), indicating the importance of considering the effects that the number of reproductive females may have on interpretations of reproductive seasonality. The female-biased infants sex ratio documented from 59 births was attributed exclusively to multiparous mothers. Primiparous mothers produced comparable numbers of sons (n=6) and daughters (n=7), and were increasingly likely to produce daughters with each subsequent reproductive event. Seven of the 11 females that have produced≥3 infants to date exhibited biases in favor of daughters whereas only 1 was biased in favor of sons. Variation in female sensitivity to local resource competition at different stages of their life histories may account for the female-biased infant sex ration in this population.  相似文献   

20.
Skewed sex ratios are common among several species of Poeciliopsis, a viviparous fish from northwestern Mexico. Since previous, unrelated studies from this laboratory (Angus and Schultz, 1983) suggested that deviation from a 1:1 sex ratio might be influenced by temperature, two inbred strains of P. lucida were tested for temperature-dependent sex determination by comparing sex ratios of offspring from pregnant females held at different water temperatures. Different sex ratios were produced by the two strains at the same temperature: one strain produced almost all-male offspring at 30°C and female-biased sex ratios at 24°C, while the other strain produced a 1:1 sex ratio at both temperatures. At intermediate temperatures, the labile strain produced sequentially fewer males with decreasing temperatures. The other strain produced a consistent sex ratio regardless of temperature. Poeciliopsis lucida apparently has a genetic polymorphism for temperature-influenced sex determination. An hypothesis is offered for the evolutionary origin of environmental sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号