首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Inhibition of the interaction between the p53 tumor suppressor and its negative regulator MDM2 is of great importance to cancer therapy. The anti-apoptotic Bcl-2 family proteins are also attractive anti-cancer molecular targets, as they are key regulators of apoptotic cell death. Previously, we reported the interactions between the p53 transactivation domain (p53TAD) and diverse members of the anti-apoptotic Bcl-2 family proteins. In this study, we investigated the binding of MDM2-inhibiting p53TAD peptide analogues, p53-MDM2/MDMX inhibitor (PMI) and pDI, with anti-apoptotic Bcl-2 family proteins, Bcl-XL and Bcl-2, by using NMR spectroscopy. The NMR chemical shift perturbation data demonstrated the direct binding of the p53 peptide analogues to Bcl-XL and Bcl-2 and showed that the PMI and pDI peptides bind to a conserved hydrophobic groove of the anti-apoptotic Bcl-2 family proteins. Furthermore, the structural model of the Bcl-XL/PMI peptide complex showed that the binding mode of the PMI peptide is highly similar to that of pro-apoptotic Bcl-2 homology 3 (BH3) peptides. Finally, our structural comparison provided a molecular basis for how the same PMI peptide can bind to two distinct anti-cancer target proteins Bcl-XL and MDM2, which may have potential applications for multi-targeting cancer therapy.  相似文献   

2.
Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly 2 orders of magnitude higher than that of 17-28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp, and Leu dominate PMI or 17-28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17-28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17-28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual-specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25-109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized intermolecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions.  相似文献   

3.
A retro-inverso peptide is made up of d-amino acids in a reversed sequence and, when extended, assumes a side chain topology similar to that of its parent molecule but with inverted amide peptide bonds. Despite their limited success as antigenic mimicry, retro-inverso isomers generally fail to emulate the protein-binding activities of their parent peptides of an α-helical nature. In studying the interaction between the tumor suppressor protein p53 and its negative regulator MDM2, Sakurai et al. (Sakurai, K., Chung, H. S., and Kahne, D. (2004) J. Am. Chem. Soc. 126, 16288–16289) made a surprising finding that the retro-inverso isomer of p53(15–29) retained the same binding activity as the wild type peptide as determined by inhibition enzyme-linked immunosorbent assay. The authors attributed the unusual outcome to the ability of the d-peptide to adopt a right-handed helical conformation upon MDM2 binding. Using a battery of biochemical and biophysical tools, we found that retro-inverso isomerization diminished p53 (15,29) binding to MDM2 or MDMX by 3.2–3.3 kcal/mol. Similar results were replicated with the C-terminal domain of HIV-1 capsid protein (3.0 kcal/mol) and the Src homology 3 domain of Abl tyrosine kinase (3.4 kcal/mol). CD and NMR spectroscopic as well as x-ray crystallographic studies showed that d-peptide ligands of MDM2 invariably adopted left-handed helical conformations in both free and bound states. Our findings reinforce that the retro-inverso strategy works poorly in molecular mimicry of biologically active helical peptides, due to inherent differences at the secondary and tertiary structure levels between an l-peptide and its retro-inverso isomer despite their similar side chain topologies at the primary structure level.  相似文献   

4.
The tumor suppressor p53 protein is tightly regulated by a ubiquitin-proteasomal degradation mechanism. Several E3 ubiquitin ligases, including MDM2 (mouse double minute 2), have been reported to play an essential role in the regulation of p53 stability. However, it remains unclear how the activity of these E3 ligases is regulated. Here, we show that the HECT-type E3 ligase Smurf1/2 (Smad ubiquitylation regulatory factor 1/2) promotes p53 degradation by enhancing the activity of the E3 ligase MDM2. We provide evidence that the role of Smurf1/2 on the p53 stability is not dependent on the E3 activity of Smurf1/2 but rather is dependent on the activity of MDM2. We find that Smurf1/2 stabilizes MDM2 by enhancing the heterodimerization of MDM2 with MDMX, during which Smurf1/2 interacts with MDM2 and MDMX. We finally provide evidence that Smurf1/2 regulates apoptosis through p53. To our knowledge, this is the first report to demonstrate that Smurf1/2 functions as a factor to stabilize MDM2 protein rather than as a direct E3 ligase in regulation of p53 degradation.  相似文献   

5.
In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design.  相似文献   

6.
The proteasome inhibitor bortezomib is effective in hematologic malignancies such as multiple myeloma but has little activity against solid tumors, acts covalently, and is associated with undesired side effects. Therefore, noncovalent inhibitors that are less toxic and more effective against solid tumors are desirable. Structure activity relationship studies led to the discovery of PI-1840, a potent and selective inhibitor for chymotrypsin-like (CT-L) (IC50 value = 27 ± 0.14 nm) over trypsin-like and peptidylglutamyl peptide hydrolyzing (IC50 values >100 μm) activities of the proteasome. Furthermore, PI-1840 is over 100-fold more selective for the constitutive proteasome over the immunoproteasome. Mass spectrometry and dialysis studies demonstrate that PI-1840 is a noncovalent and rapidly reversible CT-L inhibitor. In intact cancer cells, PI-1840 inhibits CT-L activity, induces the accumulation of proteasome substrates p27, Bax, and IκB-α, inhibits survival pathways and viability, and induces apoptosis. Furthermore, PI-1840 sensitizes human cancer cells to the mdm2/p53 disruptor, nutlin, and to the pan-Bcl-2 antagonist BH3-M6. Finally, in vivo, PI-1840 but not bortezomib suppresses the growth in nude mice of human breast tumor xenografts. These results warrant further evaluation of a noncovalent and rapidly reversible proteasome inhibitor as potential anticancer agents against solid tumors.  相似文献   

7.
Fynomers are small binding proteins derived from the human Fyn SH3 domain. Using phage display technology, Fynomers were generated inhibiting the activity of the proinflammatory cytokine interleukin-17A (IL-17A). One specific Fynomer called 2C1 inhibited human IL-17A in vitro with an IC50 value of 2.2 nm. Interestingly, when 2C1 was genetically fused to the Fc part of a human antibody via four different amino acid linkers to yield bivalent IL-17A binding proteins (each linker differed in length), the 2C1-Fc fusion protein with the longest linker displayed the most potent inhibitory activity. It blocked homodimeric IL-17A with an IC50 value of 21 pm, which corresponds to a hundredfold improved IC50 value as compared to the value obtained with monovalent Fynomer 2C1. In contrast, the 2C1-Fc fusion with the shortest linker showed only an ∼8-fold improved IC50 value of 260 pm. Furthermore, in a mouse model of acute inflammation, we have shown that the most potent 2C1-Fc fusion protein is able to efficiently inhibit IL-17A in vivo. With their suitable biophysical properties, Fynomer-Fc fusion proteins represent new drug candidates for the treatment of IL-17A mediated inflammatory conditions such as psoriasis, psoriatic arthritis, or rheumatoid arthritis.  相似文献   

8.
MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein–protein interactions (PPIs) of MDM2–p53 and MDMX–p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2–p53 and MDMX–p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been established. A number of compounds from an in-house compound library, which were immobilized onto a chemical array, were screened for interaction with fluorescence-labeled MDM2 and MDMX proteins. The subsequent fluorescent polarization assay identified several compounds that inhibited MDM2–p53 and MDMX–p53 interactions.  相似文献   

9.
Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Kiapp = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.  相似文献   

10.
Iron- and 2-oxoglutarate-dependent dioxygenases are a diverse family of non-heme iron enzymes that catalyze various important oxidations in cells. A key structural motif of these dioxygenases is a facial triad of 2-histidines-1-carboxylate that coordinates the Fe(II) at the catalytic site. Using histone demethylase JMJD1A and DNA repair enzyme ABH2 as examples, we show that this family of dioxygenases is highly sensitive to inhibition by carcinogenic nickel ions. We find that, with iron, the 50% inhibitory concentrations of nickel (IC50 [Ni(II)]) are 25 μm for JMJD1A and 7.5 μm for ABH2. Without iron, JMJD1A is 10 times more sensitive to nickel inhibition with an IC50 [Ni(II)] of 2.5 μm, and approximately one molecule of Ni(II) inhibits one molecule of JMJD1A, suggesting that nickel causes inhibition by replacing the iron. Furthermore, nickel-bound JMJD1A is not reactivated by excessive iron even up to a 2 mm concentration. Using x-ray absorption spectroscopy, we demonstrate that nickel binds to the same site in ABH2 as iron, and replacement of the iron by nickel does not prevent the binding of the cofactor 2-oxoglutarate. Finally, we show that nickel ions target and inhibit JMJD1A in intact cells, and disruption of the iron-binding site decreases binding of nickel ions to ABH2 in intact cells. Together, our results reveal that the members of this dioxygenase family are specific targets for nickel ions in cells. Inhibition of these dioxygenases by nickel is likely to have widespread impacts on cells (e.g. impaired epigenetic programs and DNA repair) and may eventually lead to cancer development.  相似文献   

11.
The mono-ADP-ribosyltransferase (mART) toxins are contributing factors to a number of human diseases, including cholera, diphtheria, traveler''s diarrhea, and whooping cough. VahC is a cytotoxic, actin-targeting mART from Aeromonas hydrophila PPD134/91. This bacterium is implicated primarily in diseases among freshwater fish species but also contributes to gastrointestinal and extraintestinal infections in humans. VahC was shown to ADP-ribosylate Arg-177 of actin, and the kinetic parameters were Km(NAD+) = 6 μm, Km(actin) = 24 μm, and kcat = 22 s−1. VahC activity caused depolymerization of actin filaments, which induced caspase-mediated apoptosis in HeLa Tet-Off cells. Alanine-scanning mutagenesis of predicted catalytic residues showed the predicted loss of in vitro mART activity and cytotoxicity. Bioinformatic and kinetic analysis also identified three residues in the active site loop that were critical for the catalytic mechanism. A 1.9 Å crystal structure supported the proposed roles of these residues and their conserved nature among toxin homologues. Several small molecules were characterized as inhibitors of in vitro VahC mART activity and suramin was the best inhibitor (IC50 = 20 μm). Inhibitor activity was also characterized against two other actin-targeting mART toxins. Notably, these inhibitors represent the first report of broad spectrum inhibition of actin-targeting mART toxins.  相似文献   

12.
The more potent inhibitory activity against angiotensin-converting enzyme (ACE) was excised from a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) preparation of Bacillus stearothermophilus by heating at 120°C in 1 m AcOH–20mm HCI, as compared with GAPDH preparations of yeast and pig. Sufficient excision of B. stearothermophilus ACE inhibitors required a longer proteolysis time of 60 min. Two inhibitors were then purified by gel-permeation and reverse-phase chromatog-raphies. One of the B. stearothermophilus ACE inhibitors, BG-1, was the GAPDH peptide 68–77 (Gly-Lys-Glu-Ile-Ile-Val-Lys-Ala-Glu-Arg, IC50: 32 μm). Another inhibitor, BG-2 (Gly-Lys-Met-Val-Lys-Val-Val-Ser-Trp-Tyr, IC50: 6 μM), corresponded to GAPDH peptide 304–313. These sequences were quite different from those of vertebrate GAPDH peptides and the venom peptide family with ACE inhibitory activity. BG-2 was found to be a non-competitive type inhibitor, differing from many natural peptide inhibitors. Thus, B. stearothermophilus GAPDH seemed to be a good source of new type ACE inhibitors, in addition to the advantages due to its thermophilic property.  相似文献   

13.
The chemokine receptors CCR5 and CCR2b share 89% amino acid homology. CCR5 is a co-receptor for HIV and CCR5 antagonists have been investigated as inhibitors of HIV infection. We describe the use of two CCR5 antagonists, Schering-C (SCH-C), which is specific for CCR5, and TAK-779, a dual inhibitor of CCR5 and CCR2b, to probe the CCR5 inhibitor binding site using CCR5/CCR2b chimeric receptors. Compound inhibition in the different chimeras was assessed by inhibition of chemokine-induced calcium flux. SCH-C inhibited RANTES (regulated on activation, normal T cell expressed and secreted) (CCL5)-mediated calcium flux on CCR5 with an IC50 of 22.8 nm but was inactive against monocyte chemoattractant protein-1 (CCL2)-mediated calcium flux on CCR2b. However, SCH-C inhibited CCL2-induced calcium flux against a CCR5/CCR2b chimera consisting of transmembrane domains IV–VI of CCR5 with an IC50 of 55 nm. A sequence comparison of CCR5 and CCR2b identified a divergent amino acid sequence located at the junction of transmembrane domain V and second extracellular loop. Transfer of the CCR5 sequence KNFQTLKIV into CCR2b conferred SCH-C inhibition (IC50 of 122 nm) into the predominantly CCR2b chimera. Furthermore, a single substitution, R206I, conferred partial but significant inhibition (IC50 of 1023 nm) by SCH-C. These results show that a limited amino acid sequence is responsible for SCH-C specificity to CCR5, and we propose a model showing the interaction with CCR5 Ile198.  相似文献   

14.
Three novel peptides were isolated from the venom of the sea anemone Urticina grebelnyi. All of them are 29 amino acid peptides cross-linked by two disulfide bridges, with a primary structure similar to other sea anemone peptides belonging to structural group 9a. The structure of the gene encoding the shared precursor protein of the identified peptides was determined. One peptide, π-AnmTX Ugr 9a-1 (short name Ugr 9-1), produced a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. It completely blocked the transient component (IC50 10 ± 0.6 μm) and partially (48 ± 2%) inhibited the amplitude of the sustained component (IC50 1.44 ± 0.19 μm). Using in vivo tests in mice, Ugr 9-1 significantly reversed inflammatory and acid-induced pain. The other two novel peptides, AnmTX Ugr 9a-2 (Ugr 9-2) and AnmTX Ugr 9a-3 (Ugr 9-3), did not inhibit the ASIC3 current. NMR spectroscopy revealed that Ugr 9-1 has an uncommon spatial structure, stabilized by two S-S bridges, with three classical β-turns and twisted β-hairpin without interstrand disulfide bonds. This is a novel peptide spatial structure that we propose to name boundless β-hairpin.  相似文献   

15.
Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective.  相似文献   

16.
Mutual dependence of MDM2 and MDMX in their functional inactivation of p53   总被引:12,自引:0,他引:12  
MDMX, an MDM2-related protein, has emerged as yet another essential negative regulator of p53 tumor suppressor, since loss of MDMX expression results in p53-dependent embryonic lethality in mice. However, it remains unknown why neither homologue can compensate for the loss of the other. In addition, results of biochemical studies have suggested that MDMX inhibits MDM2-mediated p53 degradation, thus contradicting its role as defined in gene knockout experiments. Using cells deficient in either MDM2 or MDMX, we demonstrated that these two p53 inhibitors are in fact functionally dependent on each other. In the absence of MDMX, MDM2 is largely ineffective in down-regulating p53 because of its extremely short half-life. MDMX renders MDM2 protein sufficiently stable to function at its full potential for p53 degradation. On the other hand, MDMX, which is a cytoplasmic protein, depends on MDM2 to redistribute into the nucleus and be able to inactivate p53. We also showed that MDMX, when exceedingly overexpressed, inhibits MDM2-mediated p53 degradation by competing with MDM2 for p53 binding. Our findings therefore provide a molecular basis for the nonoverlapping activities of these two p53 inhibitors previously revealed in genetic studies.  相似文献   

17.
K+Cl cotransporters (KCCs) play fundamental physiological roles in processes such as inhibitory neurotransmission and cell volume regulation. Mammalian genomes encode four distinct KCC paralogs, which share basic transport characteristics but differ significantly in ion affinity, pharmacology, and relative sensitivity to cell volume. Studies to identify divergence in functional characteristics have thus far focused on the cytoplasmic termini. Here, we investigated sequence requirements of the large extracellular loop (LEL) for function in KCC2 and KCC4. Mutation of all four evolutionarily conserved cysteines abolished KCC2 transport activity. This behavior differs from that of its closest relative, KCC4, which is insensitive to this mutation. Chimeras supported the differences in the LEL of the two cotransporters, because swapping wild-type LEL resulted in functional KCC2 but rendered KCC4 inactive. Insertion of the quadruple cysteine substitution mutant of the KCC4 loop, which was functional in the parental isoform, abolished transport activity in KCC2. Dose-response curves of wild-type and chimeric KCCs revealed that the LEL contributes to the different sensitivity to loop diuretics; a KCC2 chimera containing the KCC4 LEL displayed an IC50 of 396.5 μm for furosemide, which was closer to KCC4 (548.8 μm) than to KCC2 (184.4 μm). Cell surface labeling and immunocytochemistry indicated that mutations do not affect trafficking to the plasma membrane. Taken together, our results show a dramatic and unexpected difference in the sequence requirements of the LEL between the closely related KCC2 and KCC4. Furthermore, they demonstrate that evolutionarily highly conserved amino acids can have different functions within KCC members.  相似文献   

18.
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant 13C,15N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with Ki values of 3.9 × 10−10 m, 6.2 × 10−10 m, 1.4 × 10−9 m, and 1.2 × 10−8 m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.  相似文献   

19.
C-reactive protein (CRP) is an acute phase protein of the pentraxin family that binds ligands in a Ca2+-dependent manner, and activates complement. Knowledge of its oligomeric state in solution and at surfaces is essential for functional studies. Analytical ultracentrifugation showed that CRP in 2 mm Ca2+ exhibits a rapid pentamer-decamer equilibrium. The proportion of decamer decreased with an increase in NaCl concentration. The sedimentation coefficients s20,w0 of pentameric and decameric CRP were 6.4 S and in excess of 7.6 S, respectively. In the absence of Ca2+, CRP partially dissociates into its protomers and the NaCl concentration dependence of the pentamer-decamer equilibrium is much reduced. By x-ray scattering, the radius of gyration RG values ranged from 3.7 nm for the pentamer to above 4.0 nm for the decamer. An averaged KD value of 21 μm in solution (140 mm NaCl, 2 mm Ca2+) was determined by x-ray scattering and modeling based on crystal structures for the pentamer and decamer. Surface plasmon resonance showed that CRP self-associates on a surface with immobilized CRP with a similar KD value of 23 μm (140 mm NaCl, 2 mm Ca2+), whereas CRP aggregates in low salt. It is concluded that CRP is reproducibly observed in a pentamer-decamer equilibrium in physiologically relevant concentrations both in solution and on surfaces. Both 2 mm Ca2+ and 140 mm NaCl are essential for the integrity of CRP in functional studies and understanding the role of CRP in the acute phase response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号