首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Metabolic rate is a key component of energy budgets that scales with body size and varies with large-scale environmental geographical patterns. Here we conduct an analysis of standard metabolic rates (SMR) of marine ectotherms across a 70° latitudinal gradient in both hemispheres that spanned collection temperatures of 0–30 °C. To account for latitudinal differences in the size and skeletal composition between species, SMR was mass normalized to that of a standard-sized (223 mg) ash-free dry mass individual. SMR was measured for 17 species of calcified invertebrates (bivalves, gastropods, urchins and brachiopods), using a single consistent methodology, including 11 species whose SMR was described for the first time. SMR of 15 out of 17 species had a mass-scaling exponent between 2/3 and 1, with no greater support for a 3/4 rather than a 2/3 scaling exponent. After accounting for taxonomy and variability in parameter estimates among species using variance-weighted linear mixed effects modelling, temperature sensitivity of SMR had an activation energy (Ea) of 0.16 for both Northern and Southern Hemisphere species which was lower than predicted under the metabolic theory of ecology (Ea 0.2–1.2 eV). Northern Hemisphere species, however, had a higher SMR at each habitat temperature, but a lower mass-scaling exponent relative to SMR. Evolutionary trade-offs that may be driving differences in metabolic rate (such as metabolic cold adaptation of Northern Hemisphere species) will have important impacts on species abilities to respond to changing environments.  相似文献   

2.
We assessed the intraspecific mass scaling of standard metabolic rate (SMR), maximum metabolic rate (MMR), excess post-exercise oxygen consumption (EPOC), and erythrocyte size in grass carp (Ctenopharyngodon idellus), with body masses ranging from 4.0 to 459 g. SMR and MMR scaled with body mass with similar exponents, but neither exponent matched the expected value of 0.75 or 1, respectively. Erythrocyte size scaled with body mass with a very low exponent (0.090), suggests that while both cell number and cell size contribute to the increase in body mass, cell size plays a smaller role. The similar slopes of MMR and SMR in grass carp suggest a constant factorial aerobic scope (FAS) as the body grows. SMR was negatively correlated with FAS, indicating a tradeoff between SMR and FAS. Smaller fish recovered faster from the exhaustive exercises, and the scaling exponent of EPOC was 1.075, suggesting a nearly isometric increase in anaerobic capacity. Our results provide support for the cell size model and suggest that variations of erythrocyte size may partly contribute to the intraspecific scaling of SMR. The scaling exponent of MMR was 0.863, suggesting that the metabolism of non-athletic fish species is less reliant on muscular energy expenditure, even during strenuous exercise.  相似文献   

3.
Thermal dependence of clearance rate (CR: l h?1), standard (SMR: J h?1) and routine metabolic rates (RMR: J h?1), were analyzed in fast (F)- and slow (S)-growing juveniles of the clam Ruditapes philippinarum. Physiological rates were measured at the maintenance temperature (17 °C), and compared with measurements performed at 10 and 24 °C after 16 h and 14 days to analyze acute and acclimated responses, respectively. Metabolic rates (both RMR and SMR) differed significantly between F and S seeds, irrespective of temperature. Mass-specific CRs were not different for F and S seeds but were significantly higher in F clams for rates standardized according to allometric size-scaling rules. Acute thermal dependency of CR was equal for F and S clams: mean Q 10 were ≈3 and 2 in temperature ranges of 10–17 and 17–24 °C, respectively. CR did not change after 2 weeks of acclimation to temperatures. Acute thermal effects on SMR were similar in both groups (Q 10 ≈ 1 and 1.6 in temperature ranges of 10–17 and 17–24 °C, respectively). Large differences between groups were found in the acute thermal dependence of RMR: Q 10 in F clams (≈1.2 and 1.9 at temperature ranges of 10–17 and 17–24 °C, respectively) were similar to those found for SMR (Q 10 = 1.0 and 1.7). In contrast, RMR of S clams exhibited maximum thermal dependence (Q 10 = 3.1) at 10–17 °C and become depressed at higher temperatures (Q 10 = 0.9 at 17–24 °C). A recovery of RMR in S clams was recorded upon acclimation to 24 °C. Contrasting metabolic patterns between fast and slow growers are interpreted as a consequence of differential thermal sensitivity of the fraction of metabolism associated to food processing and assimilation.  相似文献   

4.
The present study determined the effect of body mass and acclimation temperature (15–28°C) on oxygen consumption rate (ṀO2) and the size dependency of preferred temperature in European perch Perca fluviatilis. Standard metabolic rate (SMR) scaled allometrically with body mass by an exponent of 0.86, and temperature influenced SMR with a Q10 of 1.9 regardless of size. Maximum metabolic rate (MMR) and aerobic scope (MMR-SMR) scaled allometrically with body mass by exponents of 0.75–0.88. The mass scaling exponents of MMR and aerobic scope changed with temperature and were lowest at the highest temperature. Consequently, the optimal temperature for aerobic scope decreased with increasing body mass. Notably, fish <40 g did not show a decrease aerobic scope with increasing temperature. Factorial aerobic scope (MMR × SMR−1) generally decreased with increasing temperatures, was unaffected by size at the lower temperatures, and scaled negatively with body mass at the highest temperature. Similar to the optimal temperature for aerobic scope, preferred temperature declined with increasing body mass, unaffectedly by acclimation temperature. The present study indicates a limitation in the capacity for oxygen uptake in larger fish at high temperatures. A constraint in oxygen uptake at high temperature may restrict the growth of larger fish with environmental warming, at least if food availability is not limited. Furthermore, behavioural thermoregulation may be contributing to regional changes in the size distribution of fish in the wild caused by global warming as larger individuals will prefer colder water at higher latitudes and at larger depths than smaller conspecifics with increasing environmental temperatures.  相似文献   

5.
The estuarine crocodile (Crocodylus porosus) is an apex predator across freshwater, estuarine and coastal environments. The impact of a changing C. porosus population upon the ecosystem is unknown, but due to large ontogenetic changes in body mass (>1000‐fold) their impact may be wide reaching and substantial. Here we investigated the relationship between diet, movement and body size in a population of C. porosus inhabiting a tidal river in northern Australia. Subcutaneous acoustic transmitters and fixed underwater receivers were used to determine the activity space and movement patterns of 42 individuals (202–451 cm in total length). There was no size‐related spatial partitioning among different sized crocodiles. Large individuals (snout–vent length (SVL): 160 cm < SVL < 188.5 cm) did, however, exhibit a much larger activity space than other size classes. Diet and individual specialization was assessed using the composition of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues with different turnover rates. There was a quadratic relationship between body size and δ15N, suggesting that medium‐sized individuals (110 cm < SVL < 160 cm) incorporated a greater proportion of high trophic prey into their diets than small (SVL < 110 cm) or large individuals (SVL > 160 cm). Tissue δ13C composition on the other hand was positively correlated with body size, indicating that different size classes were trophically linked to primary producers in different habitats. Individual‐level analyses showed that small crocodiles were generalist feeders while medium and large size classes specialized on particular prey items within the food webs they fed. The findings further our understanding of ontogenetic variation in C. porosus diet, and suggest that change in C. porosus population size or demographics may be influential at various levels across the local food web.  相似文献   

6.
Given that leptin, ghrelin and thyrotropin play a major role in the regulation of resting energy expenditure (REE) and that the FTO rs9939609 and the MC4R rs17782313 polymorphisms have been proposed to affect energy homeostasis, we hypothesized that both polymorphisms are associated with REE and that these relationships can be mediated by leptin, ghrelin and thyrotropin in obesity. Therefore, the present study aimed to examine the relationships between FTO rs9939609 and the MC4R rs17782313 with REE, leptin, ghrelin and thyrotropin levels in obese women. The study comprised 77 obese (body mass index 34.0?±?2.8 kg/m2) women (age 36.7?±?7 years). We measured body composition by dual-energy X-ray absorptiometry and REE by indirect calorimetry. We analysed fasting leptin, ghrelin and thyrotropin levels and the ratio of leptin to fat mass was calculated. Genotype distributions of the polymorphisms did not deviate from Hardy–Weinberg expectations (P values >0.2). Women carrying the A allele of the FTO rs9939609 had lower REE (1,580?±?22 vs. 1,739?±?35 kcal/day, P?<?0.001) and higher leptin to fat mass ratio (1.33?±?0.05 vs. 1.13?±?0.08 ng/ml kg, P?<?0.05) and thyrotropin levels (1.93?±?0.10 vs. 1.53?±?0.16 μU/ml, P?<?0.05) regardless of age and body mass index. We found no significant influence of the MC4R rs17782313 on energy metabolism or biochemical variables. Our findings confirm that the A allele of the FTO rs9939609 is associated with lower REE and increased plasma leptin levels. We also found an association between the FTO rs9939609 and thyrotropin, suggesting the possible influence of FTO in the hypothalamic–pituitary–thyroid axis as a potential mechanism of the increased adiposity.  相似文献   

7.
Bone and muscle, two major tissue types of musculoskeletal system, have strong genetic determination. Abnormality in bone and/or muscle may cause musculoskeletal diseases such as osteoporosis and sarcopenia. Bone size phenotypes (BSPs), such as hip bone size (HBS), appendicular bone size (ABS), are genetically correlated with body lean mass (mainly muscle mass). However, the specific genes shared by these phenotypes are largely unknown. In this study, we aimed to identify the specific genes with pleiotropic effects on BSPs and appendicular lean mass (ALM). We performed a bivariate genome-wide association study (GWAS) by analyzing ~690,000 SNPs in 1,627 unrelated Han Chinese adults (802 males and 825 females) followed by a replication study in 2,286 unrelated US Caucasians (558 males and 1,728 females). We identified 14 interesting single nucleotide polymorphisms (SNPs) that may contribute to variation of both BSPs and ALM, with p values <10?6 in discovery stage. Among them, the association of three SNPs (rs2507838, rs7116722, and rs11826261) in/near GLYAT (glycine-N-acyltransferase) gene was replicated in US Caucasians, with p values ranging from 1.89 × 10?3 to 3.71 × 10?4 for ALM–ABS, from 5.14 × 10?3 to 1.11 × 10?2 for ALM–HBS, respectively. Meta-analyses yielded stronger association signals for rs2507838, rs7116722, and rs11826261, with pooled p values of 1.68 × 10?8, 7.94 × 10?8, 6.80 × 10?8 for ALB–ABS and 1.22 × 10?4, 9.85 × 10?5, 3.96 × 10?4 for ALM–HBS, respectively. Haplotype allele ATA based on these three SNPs was also associated with ALM–HBS and ALM–ABS in both discovery and replication samples. Interestingly, GLYAT was previously found to be essential to glucose metabolism and energy metabolism, suggesting the gene’s dual role in both bone development and muscle growth. Our findings, together with the prior biological evidence, suggest the importance of GLYAT gene in co-regulation of bone phenotypes and body lean mass.  相似文献   

8.
The β1-adrenoceptor (ADRB1) gene Arg389Gly polymorphism has been extensively studied as a candidate gene in essential hypertension (EH), but no consensus has been reached on the relationship between this polymorphism and EH risk. To systematically explore their possible association, a meta-analysis was conducted. All relevant case–control trials in English-language publications before 1 June 2012 were identified by searching the PubMed and Embase databases. Finally, eight articles met our inclusion criteria, including a total of 5,088 patients with EH and 6,515 controls. No evidence of publication bias was found. Fixed-effects model and random-effects model were applied for dichotomous outcomes to combine results from individual studies. Overall, the Gly allelic frequency of Arg389Gly polymorphism was significantly lower in EH subjects than that in controls (Gly versus Arg: P = 0.04, OR = 0.89, 95 % CI [0.80–1.00], P heterogeneity = 0.03, I 2 = 52 %, random-effects model; GlyGly + ArgGly versus ArgArg: P = 0.02, OR = 0.86, 95 % CI [0.76–0.97], P heterogeneity = 0.08 and I 2 = 42 %, random-effect model). Subgroup analysis by ethnicity detected this association only in East Asians. In sensitivity analysis, the study by Bengtsson K was recognized as the main cause of heterogeneity, which was the only one study with the diagnostic standard for EH as systolic blood pressure (SBP) ≥160 mmHg or diastolic blood pressure (DBP) ≥90 mmHg. We concluded that the Gly allele of ADRB1 Arg389Gly polymorphism might confer lower risk for EH, especially in East Asians.  相似文献   

9.
Reindeer (Rangifer tarandus tarandus) may include large proportions of lichens in their winter diet. These dietary lichens are rich in phenolic secondary compounds, the most well-known being the antimicrobial usnic acid. Previous studies have shown that reindeer host rumen bacteria resistant to usnic acid and that usnic acid is quickly detoxified in their rumen. In the present study, reindeer (n = 3) were sampled before, during, and after usnic acid supplementation to determine the effect on their rumen microbial ecology. Ad libitum intake of usnic acid averaged up to 278 mg/kg body mass. Population densities of rumen bacteria and methanogenic archaea determined by real-time PCR, ranged from 1.36 × 109 to 11.8 × 109 and 9.0 × 105 to 1.35 × 108 cells/g wet weight, respectively, and the two populations did not change significantly during usnic acid supplementation (repeated measures ANOVA) or vary significantly between the rumen liquid and particle fraction (paired t test). Rumen bacterial community structure determined by denaturing gradient gel electrophoresis did not change in response to intake of usnic acid. Firmicutes (38.7 %) and Bacteriodetes (27.4 %) were prevalent among the 16S rRNA gene sequences (n = 62) from the DGGE gels, but representatives of the phyla Verrucomicrobia (14.5 %) and Proteobacteria (1.6 %) were also detected. Rapid detoxification of the usnic acid or resistance to usnic acid may explain why the diversity of the dominant bacterial populations and the bacterial density in the reindeer rumen does not change during usnic acid supplementation.  相似文献   

10.
The gene encoding β1-adrenoreceptor is regarded as a hypertension-susceptibility candidate gene. The association of β1-adrenoreceptor gene Arg389Gly and Ser49Gly polymorphisms with hypertension has been exhaustively investigated; however, the studies have yielded inconsistent results. We sought to shed some light on this inconsistency by performing a systemic meta-analysis. Data were extracted from 17 articles (cases/controls: 7,586/8,441) for Arg389Gly, and eight articles (3,582/2,998) for Ser49Gly. The random-effects model was applied irrespective of between-study heterogeneity. Overall results indicated significance for Ser49Gly under both allelic (odds ratio = 1.13; 95 % confidence interval [95 % CI] 1.03–1.26; P = 0.011) and dominant (1.19; 1.04–1.28; 0.011) models, without evidence of heterogeneity (I 2 = 0.0 %). Grouping studies by ethnicity observed marginally significant association for Arg389Gly (0.82; 0.66–1.0; 0.049) and Ser49Gly (1.3; 1.0–1.68; 0.048) polymorphisms in Caucasians under allelic model. Association was strikingly potentiated for both polymorphisms after restricting analyses to studies published in English journals. When only large studies (≥500 subjects) were considered, 389Gly allele decreased the odds of developing hypertension by 16 % (0.84; 0.74–0.95; 0.007). There was no observable publication bias for both polymorphisms. Taken together, our results provide clarification to the logical candidacy of β1-adrenoreceptor gene in the development of hypertension.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with strong genetic components. To identity novel risk variants for ALS, utilizing the latest genome-wide association studies (GWAS) and eQTL study data, we conducted a genome-wide expression association analysis by summary data-based Mendelian randomization (SMR) method. Summary data were derived from a large-scale GWAS of ALS, involving 12577 cases and 23475 controls. The eQTL annotation dataset included 923,021 cis-eQTL for 14,329 genes and 4732 trans-eQTL for 2612 genes. Genome-wide single gene expression association analysis was conducted by SMR software. To identify ALS-associated biological pathways, the SMR analysis results were further subjected to gene set enrichment analysis (GSEA). SMR single gene analysis identified one significant and four suggestive genes associated with ALS, including C9ORF72 (P value = 7.08 × 10?6), NT5C3L (P value = 1.33 × 10?5), GGNBP2 (P value = 1.81 × 10?5), ZNHIT3(P value = 2.94 × 10?5), and KIAA1600(P value = 9.97 × 10?5). GSEA identified 7 significant biological pathways, such as PEROXISOME (empirical P value = 0.006), GLYCOLYSIS_GLUCONEOGENESIS (empirical P value = 0.043), and ARACHIDONIC_ACID_ METABOLISM (empirical P value = 0.040). Our study provides novel clues for the genetic mechanism studies of ALS.  相似文献   

12.
Metabolic rate, more specifically resting metabolic rate (RMR) or sleeping metabolic rate (SMR), of an adult subject is usually expressed as a function of the fat-free mass (FFM). Chronic exercise is thought to increase FFM and thus to increase RMR and SMR. We determined body mass (BM), body composition, and SMR before, during, and after an endurance training programme without interfering with energy intake. The subjects were 11 women and 12 men, aged 37 (SD 3) years and body mass index 22.3 (SD 1.5) kg · m–2. The endurance training prepared subjects to run a half marathon competition after 44 weeks. The SMR was measured overnight in a respiration chamber. Body composition was measured by hydrostatic weighing. Measurements were performed at 0, 8, 20, 40, and 90 weeks after the start of the training. The BM had decreased from a mean value of 66.6 (SD 6.9) to 65.6 (SD 6.7) kg (P<0.01), fat mass (FM) had decreased from 17.1 (SD 3.9) to 13.5 (SD 3.6) kg (P<0.001), and FFM had increased from 49.5 (SD 7.3) to 52.2 (SD 7.6) kg (P<0.001) at 40 weeks. Mean SMR before and after 40 weeks training was 6.5 (SD 0.7) and 6.2 (SD 0.6) MJ · day–1 (P<0.05). The decrease in SMR was related to the decrease in BM (r=0.62,P=0.001). At 90 weeks, when most subjects had not trained for nearly a year, BM and SMR were not significantly different from the initial value while FM and FFM had not changed since week 40 of training. In conclusion, it was found that an exercise induced increase in FFM did not result in an increase in SMR. There was an indication of the opposite effect, a decrease in SMR in the long term during training, possibly as a defence mechanism of the body in the maintenance of BM.  相似文献   

13.
We determined the prevalence rate and risk of infection of Trypanosoma cruzi and other trypanosomatids in Peruvian non-human primates (NHPs) in the wild (n = 126) and in different captive conditions (n = 183). Blood samples were collected on filter paper, FTA cards, or EDTA tubes and tested using a nested PCR protocol targeting the 24Sα rRNA gene. Main risk factors associated with trypanosomatid and T. cruzi infection were genus and the human–animal context (wild vs captive animals). Wild NHPs had higher prevalence of both trypanosomatids (64.3 vs 27.9%, P < 0.001) and T. cruzi (8.7 vs 3.3%, P = 0.057), compared to captive NHPs, suggesting that parasite transmission in NHPs occurs more actively in the sylvatic cycle. In terms of primate family, Pitheciidae had the highest trypanosomatid prevalence (20/22, 90.9%) and Cebidae had the highest T. cruzi prevalence (15/117, 12.8%). T. cruzi and trypanosomatids are common in Peruvian NHPs and could pose a health risk to human and animals that has not been properly studied.  相似文献   

14.
Gene–environment interactions need to be studied to better understand the obesity. We aimed at determining whether genetic susceptibility to obesity associates with diet intake levels and whether diet intakes modify the genetic susceptibility. In 29,480 subjects of the population-based Malmö Diet and Cancer Study (MDCS), we first assessed association between 16 genome-wide association studies identified obesity-related single-nucleotide polymorphisms (SNPs) with body mass index (BMI) and associated traits. We then conducted association analyses between a genetic risk score (GRS) comprising of 13 replicated SNPs and the individual SNPs, and relative dietary intakes of fat, carbohydrates, protein, fiber and total energy intake, as well as interaction analyses on BMI and associated traits among 26,107 nondiabetic MDCS participants. GRS associated strongly with increased BMI (P = 3.6 × 10?34), fat mass (P = 6.3 × 10?28) and fat-free mass (P = 1.3 × 10?24). Higher GRS associated with lower total energy intake (P = 0.001) and higher intake of fiber (P = 2.3 × 10?4). No significant interactions were observed between GRS and the studied dietary intakes on BMI or related traits. Of the individual SNPs, after correcting for multiple comparisons, NEGR1 rs2815752 associated with diet intakes and BDNF rs4923461 showed interaction with protein intake on BMI. In conclusion, our study does not provide evidence for a major role for macronutrient-, fiber- or total energy intake levels in modifying genetic susceptibility to obesity measured as GRS. However, our data suggest that the number of risk alleles as well as some of the individual obesity loci may have a role in regulation of food and energy intake and that some individual loci may interact with diet.  相似文献   

15.
The orexigenic peptide ghrelin and the anorexigenic peptide nesfatin-1 are expressed by the same endocrine cell of the rat stomach, the X/A-like cell. However, data in humans are lacking, especially under conditions of obesity. We collected gastric tissue of obese patients undergoing sleeve gastrectomy and investigated the expression of nesfatin-1 and ghrelin in the gastric oxyntic mucosa by immunofluorescence. Nesfatin-1 immunoreactivity was detected in the human oxyntic mucosa in cells with an endocrine phenotype. A major portion of nesfatin-1 immunoreactive cells (78 %) co-localized with ghrelin indicating the occurrence in human X/A-like cells. In patients with very high body mass index (BMI 55–65 kg/m2), the number of nesfatin-1 immunoreactive cells/low-power field was significantly higher than in obese patients with lower BMI (40–50 kg/m2, 118 ± 10 vs. 82 ± 11, p < 0.05). On the other hand, the number of ghrelin immunoreactive cells was significantly reduced in obese patients with higher compared to lower BMI (96 ± 12 vs. 204 ± 21, p < 0.01). Also the ghrelin-acylating enzyme ghrelin-O-acyltransferase decreased with increasing BMI. In conclusion, nesfatin-1 immunoreactivity is also co-localized with ghrelin in human gastric X/A-like cells giving rise to a dual role of this cell type with differential effects on stimulation and inhibition of appetite dependent on the peptide released. The expression of these two peptides is differentially regulated under obese conditions with an increase of nesfatin-1 and a decrease of ghrelin immunoreactivity with rising BMI pointing towards an adaptive change of expression that may counteract further body weight increase.  相似文献   

16.
Although the study of thermoregulation in insects has shown that infected animals tend to prefer higher temperatures than healthy individuals, the immune response and energetic consequences of this preference remain unknown. We examined the effect of environmental temperature and the energetic costs associated to the activation of the immune response of Tenebrio molitor larvae following a lipopolysaccharide (LPS) challenge. We measured the effect of temperature on immune parameters including phenoloxidase (PO) activity and antibacterial responses. Further as proximal and distal costs of the immune response we determined the standard metabolic rate (SMR) and the loss of body mass (mb), respectively. Immune response was stronger at 30 °C than was at 10 or 20 °C. While SMR at 10 and 20 °C did not differ between immune treatments, at 30 °C SMR of LPS-treated larvae was almost 25–60% higher than SMR of PBS-treated and naïve larvae. In addition, the loss in mb was 1.9 and 4.2 times higher in LPS-treated larvae than in PBS-treated and naïve controls. The immune responses exhibited a positive correlation with temperature and both, SMR and mb change, were sensitive to environmental temperature. These data suggest a significant effect of environmental temperature on the immune response and on the energetic costs of immunity.  相似文献   

17.
Standard metabolic rates (SMR) were measured empirically for carmine shiner Notropis percobromus and common shiner Luxilus cornutus to develop SMR models that predict metabolic responses of each species under thermal conditions observed in the wild. SMR increased significantly with body mass and rising water temperature, ranging from 0.05 mg O2 h−1 at 10°C to 0.89 mg O2 h−1 at 20°C for N. percobromus weighing 0.6–2.5 g and from 0.11 mg O2 h−1 at 10°C to 0.98 mg O2 h−1 at 20°C for L. cornutus weighing 0.8–6.6 g. SMR models significantly differed between sympatric species on account of differences in model intercepts (RA) and temperature coefficients (RQ), however, the allometric relationships between mass and SMR did not significantly differ between species. Known distribution of N. percobromus and L. cornutus includes the Birch River located in Manitoba, Canada, where N. percobromus is listed as Endangered. Little is known about the physiology of N. percobromus or the species' ability to acclimate or adapt to different environmental conditions. While size differences between species contributed, in part, to differences in SMR predictions for Birch River populations, SMR trends (< 2 mg O2 h−1) for individuals weighing 1 g were similar for both species across daily temperatures. Respirometry experiments contributed to developing species-specific SMR models and inform on the effect of natural and anthropogenic stressors, namely water temperature, on the conservation of N. percobromus in this ecosystem.  相似文献   

18.
This study aimed to establish an allometric scaling relationship between the frequency of intestinal contractions and body mass of different mammalian species. The frequency of intestinal contractions of rabbit, guinea pig, rat and mouse were measured using an isolated organ system. The isolated rings were prepared from proximal segments of jejunums and the frequency of contractions was recorded by an isometric force procedure. The coefficients of the obtained allometric equation were ascertained by computation of least squares after logarithmic transformation of both body mass and frequency. Significant differences (p?<?0.001) were shown in the frequency of contractions between different species. The highest frequency that corresponded to the mice was 57.7 min?1 and the 95% confidence interval (CI) ranged from 45.4 to 70, while rabbits showed the lowest frequency (12.71 min?1, CI: 8.6–16.8). Logarithms of frequency were statistically proportional to logarithms of body mass (r?=?0.99; p?<?0.001). The data fitted an equation $ \mathrm{F}=18.51{{\mathrm{B}}^{-0.31 }} $ and the 95% confidence interval of the exponent ranged from ?0.30 to ?0.32. The results of this study suggest that it is probably possible to extrapolate the intestinal contraction frequency of other mammalian species by the means of allometry scaling.  相似文献   

19.
Obesity (BMI ≥30 kg/m2) increases the risk of developing lifestyle-related diseases. A subgroup of obese individuals has been described as “metabolically healthy, but obese” (MHO). In contrast to at-risk obese (ARO), the MHO phenotype is defined by a favourable lipid profile and a normal or only slightly affected insulin sensitivity, despite the same amount of body fat. The objective was to characterize the metabolic phenotype of MHO subjects. We screened a variety of genes involved in lipid metabolism and inflammation in peripheral blood mononuclear cells (PBMC). Obese subjects (men and women; 18–70 years) with BMI ≥30 kg/m2 were characterized as MHO (n = 9) or as ARO (n = 10). In addition, eleven healthy, normal weight subjects characterized as healthy by the same criteria as described for the MHO subjects were included. We found that with similar weight, total fat mass and fat mass distribution, the ARO subjects have increased plasma levels of gamma-glutamyl transpeptidase and free fatty acids. This group also has altered expression levels of a number of genes linked to lipid metabolism in PBMC with reduced gene expression levels of uncoupling protein 2, hormone-sensitive lipase and peroxisome proliferator-activated receptor δ compared with MHO subjects. The present metabolic differences between subgroups of obese subjects may contribute to explain some of the underlying mechanisms causing the increased risk of disease among ARO subjects compared with MHO subjects.  相似文献   

20.
In mammalian herbivores, faecal particle size indicates chewing efficiency. Proboscis monkeys (Nasalis larvatus) are foregut fermenters in which regurgitation and remastication (i.e. rumination) was observed in the wild, but not with the same consistency as found in ruminants and camelids. To test whether this species has exceptional chewing efficiency among primates, as ruminants have among mammals, we compared faecal particle size in free-ranging specimens with those of 12 other primate species. The discrete mean faecal particle size (dMEAN) increased with body mass (M) as dMEAN (mm) = 0.65 (95 % confidence interval 0.49–0.87) M 0.33 (0.23–0.43) in simple-stomached species. At 0.53 ± 0.09 mm, dMEAN of proboscis monkeys was particularly small for their average M (15 kg) and significantly smaller than values of two other foregut fermenting primate species. While we cannot exclude other reasons for the exceptional chewing efficiency in proboscis monkeys, this represents circumstantial evidence for regular use of rumination in this species. Thus, proboscis monkeys might be a model for convergent evolution towards rumination in a non-ungulate taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号