首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Oecologica》2002,23(4):277-285
The δ13C and δ15N values of primary producers and consumers were studied to obtain information on the trophic role of Posidonia oceanica L. Delile, the dominant primary producer, in a Mediterranean shallow environment (the Stagnone di Marsala, western Sicily). δ13C strongly discriminated between pelagic and benthic pathways, with the former based on phytoplankton and the latter on a mixed pool of seagrass detritus, epiphytes and benthic algae as carbon sources. A particularly important trophic role appears to be performed by the vegetal epiphytic community on seagrass leaves (δ13C = –14.9 ± 0.1‰), which supports most of the faunal seagrass community (i.e. Amphipoda, Isopoda, Tanaidacea; δ13C = –14.9 ± 0.1‰, –12.5 ± 0.1‰ and –14.8 ± 1.0‰, respectively). Although Poceanica13C = –11.3 ± 0.3‰) does not seem to be utilised by consumers via grazing (apart from a few Palaemonidae species with δ13C value of –10.8 ± 1.8‰), its trophic role may be via detritus. Poceanica detritus may be exploited as a carbon source by small detritivore invertebrates, and above all seems to be exploited as a nitrogen reservoir by both bottom and water column consumers determining benthic–pelagic coupling. At least three trophic levels were detected in both the pelagic (mixture of phytoplankton and cyanobacteria, zooplankton, juvenile transient fish) and benthic (sedimentary organic matter and epiphytes, small seagrass-associated invertebrates, larger invertebrates and adult resident fish) pathways.  相似文献   

2.
Stable isotopes of carbon (C) and nitrogen (N) are commonly used to track resource flows through lake food webs. However, there remains a weak understanding of the spatial variation in isotopic composition of benthic resources and how this variation affects inference about energy flows among species. Boundary layers at the interface between benthic substrates and the overlying water column restrict diffusion of nutrients and carbon from the water column to benthic algae and may affect the isotopic composition of benthic algae as nutrient and CO2 concentrations can become locally depleted in the benthic boundary layer. We quantified the variation in C and N stable isotope composition of benthic resources along a depth gradient in a large oligotrophic lake to assess the magnitude of change in stable isotope composition. Snails were increasingly depleted in 13C with depth, by about 10 ‰ from 0 to 20 m, while 15N in snails showed only subtle enrichment over this depth range. Sculpin (Cottas aleuticus) δ 13C and δ 15N signatures did not significantly change with depth and were more enriched in 15N than would be expected from consumption of snails alone. A comparison of δ 13C and δ 15N values from sculpins relative to shallow and deep snails, and alternative prey (marine-derived salmon resources), within a mixing model suggested sculpins feed selectively on deep grazers in this system in addition to marine-derived resources provided by migrating sockeye salmon. This study illustrates the importance of accounting for depth-related variation in isotope patterns when assessing benthic resource contributions to food webs using stable isotope data.  相似文献   

3.
Zebra mussels (Dreissena polymorpha) can be used to provide a baseline stable isotope signature, time-integrated with primary production. However, since zebra mussels are uncommon in pelagic zones, their potential as reference species in pelagic water columns has not been fully explored. By investigating mussels growing suspended on a single vertical cable in Lake Constance, we were able to document seasonal (April, May, and August) and depth-dependent (0–22 m) variation in mussel δ 15Ν and δ 13C. We found a strong correlation between temperature and mussel δ 15N from differing depths; and a strong relationship between temperature and Δ15Ν (estimated as δ 15Νmussel ? δ 15ΝPOM) and Δ13C (δ 13Cmussel ? δ 13CPOM). In a pattern that remained consistent over all months, Δ15Ν decreased with temperature, to the extent that negative values were recorded at temperatures >13°C. Utilizing cable-dwelling pelagic mussels as indicators of variation in isotope and temperature for pelagic water could be used as a novel field approach, comparable to in situ experimentation. We suggest that the pelagic mussel approach can be employed in tandem with benthic or littoral mussel isotope values, to develop mussel-based lake isoscapes. Such isoscapes may be pertinent to the study of seasonal trophic limnoecology and in tracking the movements of animals.  相似文献   

4.
This study investigated the trophic shift of young‐of‐the‐year (YOY) thinlip grey mullet Liza ramada and golden grey mullet Liza aurata during their recruitment in a salt marsh located on the European Atlantic Ocean coast. Stable‐isotope signatures (δ13C and δ15N) of the fishes followed a pattern, having enrichments in 13C and 15N with increasing fork length (LF): δ13C in fishes < 30 mm ranged from ?19.5 to ?15.0‰, whereas in fishes > 30 mm δ13C ranged from ?15.8 to ?12.7‰, closer to the level in salt‐marsh food resources. Large differences between the δ15N values of mugilids and those of food sources (6·0‰ on average) showed that YOY are secondary consumers, similar to older individuals, when feeding in the salt marsh. YOY mugilids shift from browsing on pelagic prey to grazing on benthic resources from the salt marsh before reaching 30 mm LF. The results highlight the role of European salt marshes as nurseries for juvenile mugilids.  相似文献   

5.
6.
The feeding habits of co-occurring gadid species Atlantic cod (Gadus morhua) and Greenland cod (Gadus ogac) in coastal Newfoundland waters, examined using stable isotope (δ 13C and δ 15N) and stomach content analysis, indicated little dietary niche overlap and interspecific competition for food resources despite similar trophic levels. Both species consumed a variety of invertebrates and fish but showed a preference for different prey items. Polychaetes, fish and small crustaceans dominated G. ogac stomach contents while small crustaceans, in particular hyperiid amphipods and fish, dominated those of G. morhua. In general, G. morhua consumed more pelagic prey and had a significantly more pelagic (more negative) δ 13C signature while G. ogac consumed primarily benthic prey and had a more benthic (more positive) δ 13C signature. δ 15N levels were similar in these species suggesting similar trophic positions, with levels increasing with fish length in both species. Dietary overlap was not significant in both stomach and stable isotope analyses. We conclude that interspecific competition for food is low between G. ogac and G. morhua and is unlikely to be a factor in the slow rebuilding of Atlantic cod in this region.  相似文献   

7.
《Marine Micropaleontology》2007,62(4):196-208
Oxygen and carbon isotopes of foraminifera were analyzed in core PC4, water depth 1366 m, off northern Japan, near the east side of the Tsugaru Strait (130 m depth) between the open northwestern Pacific Ocean and the Japan Sea. At present, the site is at the confluence of the Tsugaru Warm Current which flows eastwards out of the Sea of Japan through the Tsugaru Strait, the subarctic Oyashio Current and the subtropic Kuroshio Current. During the Last Glacial Maximum (LGM), the Oyashio Current penetrated further to the South and outflow from the Japan Sea was restricted by glacio-eustatic sea level lowering.The isotopic values of the planktic foraminifer Neogloboquadrina pachyderma (sinistral) and the benthic foraminifer Uvigerina akitaensis reflect rapid millennial-scale paleoceanographic changes between 34 and 6 ka. Hydrographic changes during deglaciation were related to events at high northern latitudes, but Holocene hydrographic changes were dominated by local effects, such as the development of the outflow of the Tsugaru Warm Current. High values of planktic δ18O during the LGM reflect the southward advance of the Oyashio Current. These values decreased by 0.3‰ from 19.4 to 18.9 ka, then increased by 0.5‰ at 18 ka, with highest values between 17.5 and 15 ka. The δ18O oscillations between 19.4 and 15 ka may reflect millennial-scale warm–cold oscillations during Heinrich event 1. Planktic microfossil data indicate that cold Oyashio waters flowed from the northwestern Pacific into the Japan Sea via the Tsugaru Strait between 17 and 16 ka, consistent with the occurrence of the highest planktic δ18O values in core PC4. Planktic δ18O values rapidly decreased by 0.9‰ at 15 ka, possibly reflecting the effects of both a rapid increase in fresh water flux and rising temperatures in the subarctic North Pacific. During the Younger Dryas, cold event planktic δ18O values increased by 0.5‰, followed by a gradual decrease by 1‰ from the early to middle Holocene, reflecting a gradual increase in eastward outflow via the Tsugaru Strait with sea level rise. Both planktic and benthic foraminiferal δ13C values oscillated between 34 and 10 ka, at relatively large amplitudes (about 0.5‰), then remained relatively stable during the last 10 kyr. Several negative planktic and benthic (∼  0.7‰) δ13C excursions were present in sediment dated between the precipitation of secondary carbonates during episodic methane release possibly associated with methane release from continental margin sediments.  相似文献   

8.
The diet of Japanese eels, Anguilla japonica, was investigated using stomach content and stable isotope analyses. Stable isotope enrichment of carbon and nitrogen (Δδ13C and Δδ15N) was first estimated for A. japonica by comparing the isotopic signatures (δ13C and δ15N) of reared eels to that of their food. The estimated isotope enrichment was then applied to the diet estimation of A. japonica in the Kojima Bay-Asahi River system, Japan, combined with conventional stomach content analysis. Stable isotope enrichment varied among tissues, from 0.2‰ to 0.8‰ for carbon and from 1.3‰ to 2.1‰ for nitrogen. Nitrogen isotope enrichment of A. japonica muscle estimated in this study was 2.1‰, which was different from the previously reported mean δ15N enrichment of several animals of 3.4‰. These results indicate that isotope-based diet estimations for A. japonica need to use species- and tissue-specific values of isotope enrichment. In the diet analysis, stomach contents and stable isotopes revealed that (1) A. japonica appear to usually feed on a single type of prey species in each feeding session, (2) principal prey species were mud shrimp, Upogebia major, in brackish Kojima Bay and crayfish, Procambarus clarkia, in the Asahi River, (3) A. japonica in Kojima Bay primarily depend on the pelagic food web as a carbon source due to mud shrimp being filter feeders and eels in the Asahi River primarily depend on the littoral food web. Based on these results and the recently reported eel movements between Kojima Bay and the Asahi River, it appears that A. japonica can adapt to various feeding environments as opportunists, but also utilize the food resources by targeting a single type of prey species during a single feeding session.  相似文献   

9.
Samples of recently produced shoot material collected in winter/spring from common plant species of mulga vegetation in eastern and Western Australia were assayed for 13C and 15N natural abundance. 13C analyses showed only three of the 88 test species to exhibit C4 metabolism and only one of seven succulent species to be in CAM mode. Non-succulent winter ephemeral C3 species showed significantly lower mean δ13C values (– 28·0‰) than corresponding C3-type herbaceous perennials, woody shrubs or trees (– 26·9, – 25·7 and – 26·2‰, respectively), suggesting lower water stress and poorer water use efficiency in carbon acquisition by the former than latter groups of taxa. Corresponding values for δ15N of the above growth and life forms lay within the range 7·5–15·5‰. δ15N of soil NH4+ (mean 19·6‰) at a soft mulga site in Western Australia was considerably higher than that of NO3 (4·3‰). Shoot dry matter of Acacia spp. exhibited mean δ15N values (9·10 ± 0·6‰) identical to those of 37 companion non-N2-fixing woody shrubs and trees (9·06 ± 0·5‰). These data, with no evidence of nodulation, suggested little or no input of fixed N2 by the legumes in question. However, two acacias and two papilionoid legumes from a dune of wind-blown, heavily leached sand bordering a lake in mulga in Western Australia recorded δ15N values in the range 2·0–3·0‰ versus 6·4–10·7‰ for associated non-N2-fixing taxa. These differences in δ15N, and prolific nodulation of the legumes, indicated symbiotic inputs of fixed N in this unusual situation. δ15N signals of lichens, termites, ants and grasshoppers from mulga of Western Australia provided evidence of N2 fixation in certain termite colonies and by a cyanobacteria-containing species of lichen. Data are discussed in relation to earlier evidence of nitrophily and water availability constraints on nitrate utilization by mulga vegetation.  相似文献   

10.
Lake Huron’s submerged sinkhole habitats are impacted by high-conductivity groundwater that allows photosynthetic cyanobacterial mats to form over thick, carbon-rich sediments. To better understand nutrient cycling in these habitats, we measured the stable isotopic content of carbon and nitrogen in organic and inorganic carbon pools in Middle Island sinkhole, a ~23 m deep feature influenced by both groundwater and overlying lake water. Two distinct sources of dissolved CO2 (DIC) were available to primary producers. Lake water DIC (δ 13C = ?0.1 ‰) differed by +5.9 ‰ from groundwater DIC (δ 13C = ?6.0 ‰). Organic carbon fixed by primary producers reflected the two DIC sources. Phytoplankton utilizing lake water DIC were more enriched in 13C (δ 13C = ?22.2 to ?23.2 ‰) than mat cyanobacteria utilizing groundwater DIC (δ 13C = ?26.3 to ?30.0 ‰). Sinkhole sediments displayed an isotopic signature (δ 13C = ?23.1 ‰) more similar to sedimenting phytoplankton than the cyanobacterial mat. Corroborated by sediment C/N ratios, these data suggest that the carbon deposited in sinkhole sediments originates primarily from planktonic rather than benthic sources. 210Pb/137Cs radiodating suggests rapid sediment accumulation and sub-bottom imaging indicated a massive deposit of organic carbon beneath the sediment surface. We conclude that submerged sinkholes may therefore act as nutrient sinks within the larger lake ecosystem.  相似文献   

11.
Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were used to investigate feeding patterns of larval and early juvenile pelagic fishes in slope waters of the Gulf of Mexico. Contribution of organic matter supplied to fishes and trophic position within this pelagic food web was estimated in 2007 and 2008 by comparing dietary signatures of the two main producers in this ecosystem: phytoplankton [based on particulate organic matter (POM)] and Sargassum spp. Stable isotope ratios of POM and pelagic Sargassum spp. were significantly different from one another with δ13C values of POM depleted by 3–6‰ and δ15N values enriched by 2 relative to Sargassum spp. Stable isotope ratios were significantly different among the five pelagic fishes examined: blue marlin Makaira nigricans, dolphinfish Coryphaena hippurus, pompano dolphinfish Coryphaena equiselis, sailfish Istiophorus platypterus and swordfish Xiphias gladius. Mean δ13C values ranged almost 2 among fishes and were most depleted in I. platypterus. In addition, mean δ15N values ranged 4–5 with highest mean values found for both C. hippurus and C. equiselis and the lowest mean value for M. nigricans during both years. Increasing δ13C or δ15N with standard length suggested that shifts in trophic position and diet occurred during early life for several species examined. Results of a two‐source mixing model suggest approximately an equal contribution of organic matter by both sources (POM = 55%; pelagic Sargassum spp. = 45%) to the early life stages of pelagic fishes examined. Contribution of organic matter, however, varied among species, and sensitivity analyses indicated that organic source estimates changed from 2 to 13% for a δ13C fractionation change of ±0·25‰ or a δ15N fractionation change of ± 1·0‰ relative to original fractionation values.  相似文献   

12.
《Marine Micropaleontology》2006,58(2):135-157
The stable carbon and oxygen isotope composition of different benthic foraminiferal species of the latest Campanian and earliest Maastrichtian from Ocean Drilling Project Hole 690C (Weddell Sea, southern South Atlantic, ∼1800 m paleowater depth) have been investigated. The total range of measured isotope values of all samples exceeds ∼4‰ for δ13C and 1.1‰ for δ18O. Carbon isotope values of proposed deep infaunal species are generally similar or only slightly lower when compared to proposed epifaunal to shallow infaunal species. Interspecific differences vary between samples probably reflecting temporal changes in organic carbon fluxes to the sea floor. Constantly lower δ13C values for Pullenia marssoni and Pullenia reussi suggest the deepest habitat for these species. The strong depletion of δ13C values by up to 3‰ within lenticulinids may be attributed to a deep infaunal microhabitat, strong vital effects, or different feeding strategy when compared to other species or modern lenticulinids. The mean δ18O values reveal a strong separation of epifaunal to shallow infaunal and deep infaunal species. Epifaunal to shallow infaunal species are characterized by low δ18O values, deep infaunal species by higher values. This result possibly reflects lower metabolic rates and longer life cycles of deep infaunal species or the operating of a pore water [CO32−] effect on the benthic foraminiferal stable isotopes.Pyramidina szajnochae shows an enrichment of oxygen isotopes with test size comprising a total of 0.6‰ between 250 and 1250 μm shell size. Although δ13C lacks a corresponding trend these data likely represent the presence of changes in metabolic rates during ontogenesis. These results demonstrate the general applicability of multi-species stable isotope measurements of pristine Cretaceous benthic foraminifera to reconstruct past microhabitats and to evaluate biological and environmental effects on the stable isotope composition.  相似文献   

13.
Trophic ecology of most demersal Arctic fishes remains one of the major knowledge gaps for understanding food web dynamics and connectivity among ecosystems. In this study, fatty acids (FA) and stable isotopes (SI) were used to study the feeding ecology of seven species (n = 106) of the most abundant benthic fishes (eelpouts, sculpins and agonids) in the Canadian Beaufort Sea from shallow (20–75 m), slope (200–350 m) and deep (500–1000 m) habitats. Both FA and SI results revealed among- and within-species variability in diet composition. Correspondence analysis of FA signatures identified high within-species variability in diet, resulting in high overlap among species. Calanus-derived FA were present in all species (Calanus markers up to 13 % of total FA) and were particularly important in Ribbed Sculpin, Adolf’s and Longear Eelpout collected in deep habitats, suggesting a strong contribution of pelagic-derived FA to benthic fish communities. Incorporation of this signal in the benthos may result from either direct consumption of deep overwintering copepods (i.e., off-bottom feeding) or through detrital accumulation in benthic invertebrate prey. Mean SI values differed among species and indicated that a large range of trophic positions (δ15N varied from 14.09 to 17.71 ‰ for Canadian Eelpout and Adolf’s Eelpout, respectively) and carbon dietary sources are preyed upon (δ13C range from ?21.13 to ?23.85 ‰ for Longear Eelpout and Ribbed Sculpin, respectively). SI analyses suggested that most species examined were low- to mid-trophic generalist benthic carnivores, with the exception of Ribbed Sculpin, which was a low-trophic pelagic predator.  相似文献   

14.
1. To assess the use of stable nitrogen isotopes (δ15N) for reconstructing trophic relationships in planktonic food webs, crustacean zooplankton species and pelagic dissolved and particulate matter were analysed in 14 subarctic lakes in northern Sweden. The lakes are situated along an altitudinal gradient and show a substantial variation in nutrient content and energy mobilization by bacterioplankton and phytoplankton. 2. The δ15N of dissolved and particulate matter was comparatively low, suggesting efficient N recycling and low losses of depleted N from the pelagic zone of these unproductive lakes. 3. Copepods had a systematically higher δ15N than cladocerans, with an average difference of 3.1–4.9‰ within lakes, implying different trophic positions of the two groups. Comparisons of nitrogen pools and energy fluxes suggest that the low cladoceran δ15N was a result of feeding on bacteria. 4. The difference in δ15N between copepods and cladocerans declined with decreasing bacterioplankton production among lakes, due either to increasing trophic isotope fractionation or decreasing relative importance of bacteria in the diet of cladocerans.  相似文献   

15.
The understanding of trophic relationships is vital for correctly modeling ecosystems and ecosystem effects of fisheries removals. The pelagic stingray is found in epipelagic sub‐tropical and tropical waters worldwide and is a common bycatch in pelagic longline fisheries. Between August 2008 and November 2011, 156 specimens (81 males; 75 females) were collected during pelagic longline fishing operations in the US South Atlantic Bight and Gulf of Mexico. Stomach content analyses found that the major prey items were cephalopod molluscs (59.18%), followed by actinopterygiian fishes (37.75%), and decapod crustaceans (35.71%). These concentrations of prey items found in the stomachs coincide with previous studies done in the Pacific Ocean. In contrast to previous studies that found high percentages of empty stomachs (63%), the current percentage of empty stomachs was much lower (25.6%), likely due to shorter times between collection and inspection. Stable isotope analysis (δ13C and δ15N) was performed on white muscle in order to correlate the trophic position with gut‐content analysis. The δ13C values ranged from ‐18.81‰ to ‐16.70‰, while the δ15N ranged from 6.11‰ to 11.88‰. Modeling of stable isotope data suggest that while squid are occasionally an important part of the pelagic stingray diet, prey usually consist of shrimp and other pelagic crustaceans. Pelagic stingrays fed within two trophic levels, but their prey appeared to feed on different carbon sources than those found in other pelagic elasmobranchs. A deeper understanding of the pelagic stingray diet sources can help fisheries management as it begins to transition into ecosystem‐based management.  相似文献   

16.
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

17.
Sources and distribution of particulate organic matter in surface waters of the Humber and Thames estuaries and in the East Anglian plume in the southern North Sea were investigated in winter 2006/2007. Carbon (C) and nitrogen (N) stable isotopes provided evidence for the presence of three particulate organic matter sources; riverine plankton (δ13C ?30 ‰ and δ15N 7.9 ‰) identified in the Thames estuary only, marine plankton (average δ13C ?21.4 ‰ and δ15N 4.5 ‰) and a third source with an enriched 13C signature (>?16.7 ‰) and elevated C:N ratio (>12.7). Particulate organic matter with enriched 13C values were observed throughout the Humber estuary and at the marine end-member of the Thames estuary. While bacterial cycling of organic carbon undoubtedly takes place within these estuaries, these processes on their own are unlikely to account for the isotopic signatures seen. The 13C enriched organic matter source is suggested to be due to particulate organic matter input from marsh plants and seagrasses such as Spartina spp. and Zostera on the adjacent salt marshes and mudflats and/or macroalgae along the banks of the estuaries. This 13C enriched signal was also identified approximately 50 km offshore within the southern North Sea, in the East Anglian plume, which transports UK riverine water off-shore in a discrete plume. This plume therefore provides a mechanism to transport this estuarine derived organic matter pool offshore out of the estuaries. These results indicate that estuarine derived organic matter from marsh plants, seagrasses and/or macroalgae contributes to the southern North Sea organic matter pool and is therefore likely to contribute to winter-time shelf sea carbon and nitrogen cycles.  相似文献   

18.
We conducted a comparative analysis of the fatty acid (FA) composition and the ratios of stable isotopes of carbon (δ13C) and nitrogen (δ15N) in soft tissues of ten species of bivalve mollusks collected simultaneously on adjacent biotopes in shallow Vostok Bay (the Sea of Japan). Comparison of the FA composition of the lipids of digestive gland and all soft tissues showed that the percentages of C16 and C18 marker FAs were greater in the digestive gland and the levels of marker C20 and C22 FAs were, in most cases, higher in soft tissues. According to the results of cluster analysis and principal component analysis, four groups of samples were identified with a similarity of the FA composition of more than 80% within groups. The carbon stableisotope ratios varied within very wide limits in the studied species of bivalves; the range of δ13C variations was 8.1‰. The range of δ15N variations was much smaller, 2.5‰. Two pairs of species of mollusks (Saxidomus purpurataProtothaca euglypta and P. jedoensisDiplodonta semiasperoides) did not differ in the values of both δ15N and δ13C, the remaining species differed in at least one of these parameters. The greatest similarity of the FA composition and stable-isotope ratios was found in species that inhabit similar substrates, except Macoma irus and D. semiasperoides. Particularly marked differences in the FA composition and stable-isotope ratios were found between a filter-/surface deposit-feeder M. irus and filter-feeders Arca boucardi and Mytilus coruscus that live next to this species.  相似文献   

19.
Stable nitrogen (δ15N) and carbon (δ13C) isotopes of Atlantic sharpnose shark Rhizoprionodon terraenovae embryos and mothers were analysed. Embryos were generally enriched in 15N in all studied tissue relative to their mothers' tissue, with mean differences between mother and embryo δ15N (i.e. Δδ15N) being 1·4‰ for muscle, 1·7‰ for liver and 1·1‰ for cartilage. Embryo muscle and liver were enriched in 13C (both Δδ13C means = 1·5‰) and embryo cartilage was depleted (Δδ13C mean = ?1·01‰) relative to corresponding maternal tissues. While differences in δ15N and δ13C between mothers and their embryos were significant, muscle δ15N values indicated embryos to be within the range of values expected if they occupied a similar trophic position as their respective mothers. Positive linear relationships existed between embryo total length (LT) and Δδ15N for muscle and liver and embryo LT and Δδ13C for muscle, with those associations possibly resulting from physiological differences between smaller and larger embryos or differences associated with the known embryonic nutrition shift (yolk feeding to placental feeding) that occurs during the gestation of this placentatrophic species. Together these results suggest that at birth, the δ15N and δ13C values of R. terraenovae are likely higher than somewhat older neonates whose postpartum feeding habits have restructured their isotope profiles to reflect their postembryonic diet.  相似文献   

20.
Trophodynamics of meso-zooplankton in the North Sea (NS) were assessed at a site in the southern NS, and at a shallow and a deep site in the central NS. Offshore and neritic species from different ecological niches, including Calanus spp., Temora spp. and Sagitta spp., were collected during seven cruises over 14 months from 2007 to 2008. Bulk stable isotope (SI) analysis, phospholipid-derived fatty acid (PLFA) compositions, and δ 13CPLFA data of meso-zooplankton and particulate organic matter (POM) were used to describe changes in zooplankton relative trophic positions (RTPs) and trophodynamics. The aim of the study was to test the hypothesis that the RTPs of zooplankton in the North Sea vary spatially and seasonally, in response to hydrographic variability, with the microbial food web playing an important role at times. Zooplankton RTPs tended to be higher during winter and lower during the phytoplankton bloom in spring. RTPs were highest for predators such as Sagitta sp. and Calanus helgolandicus and lowest for small copepods such as Pseudocalanus elongatus and zoea larvae (Brachyura). δ 15NPOM-based RTPs were only moderate surrogates for animals’ ecological niches, because of the plasticity in source materials from the herbivorous and the microbial loop food web. Common (16:0) and essential (eicosapentaenoic acid, EPA and docosahexaenoic acid, DHA) structural lipids showed relatively constant abundances. This could be explained by incorporation of PLFAs with δ 13C signatures which followed seasonal changes in bulk δ 13CPOM and PLFA δ 13CPOM signatures. This study highlighted the complementarity of three biogeochemical approaches for trophodynamic studies and substantiated conceptual views of size-based food web analysis, in which small individuals of large species may be functionally equivalent to large individuals of small species. Seasonal and spatial variability was also important in altering the relative importance of the herbivorous and microbial food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号