首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m?2 day?1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m?2 day?1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.  相似文献   

2.
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m?2 h?1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m?2 h?1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3? concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodies.  相似文献   

3.
We measured CO2 and CH4 concentrations throughout the water columns of two boreal lakes with contrasting trophic status and water color during a wet summer. Previous work suggested that rainfall was important for carbon gas evasion. During the stratified period, precipitation generated unexpected variabilities in CO2, CH4, and DOC concentrations below the euphotic zone, especially in the metalimnion. The DOC concentrations after the rains rose to 22 and 10 mg L?1 from the initial 13 and 8 mg L?1, in the humic and clear-water lakes respectively, simultaneously with an increase in carbon gas concentrations. In both lakes, the water column was stable, suggesting that the high gas concentrations were not due to transport from hypolimnia rich in carbon gases. The high concentrations of CH4, which can only be produced in anoxic conditions, in the oxic metalimnion and epilimnion in comparison to the hypolimnetic concentrations indicated that a considerable proportion of the pelagic CH4 originated from the catchment and/or the littoral zone. Thus, as a consequence of high levels of precipitation, carbon gas concentrations during summer stratification can increase, which can have overall importance in annual carbon budgets.  相似文献   

4.

Northern lakes are a source of greenhouse gases to the atmosphere and contribute substantially to the global carbon budget. However, the sources of methane (CH4) to northern lakes are poorly constrained limiting our ability to the assess impacts of future Arctic change. Here we present measurements of the natural groundwater tracer, radon, and CH4 in a shallow lake on the Yukon-Kuskokwim Delta, AK and quantify groundwater discharge rates and fluxes of groundwater-derived CH4. We found that groundwater was significantly enriched (2000%) in radon and CH4 relative to lake water. Using a mass balance approach, we calculated average groundwater fluxes of 1.2 ± 0.6 and 4.3 ± 2.0 cm day−1, respectively as conservative and upper limit estimates. Groundwater CH4 fluxes were 7—24 mmol m−2 day−1 and significantly exceeded diffusive air–water CH4 fluxes (1.3–2.3 mmol m−2 day−1) from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Isotopic signatures of CH4 were depleted in groundwaters, consistent with microbial production. Higher methane concentrations in groundwater compared to other high latitude lakes were likely the source of the comparatively higher CH4 diffusive fluxes, as compared to those reported previously in high latitude lakes. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for CH4 release across Arctic landscapes.

  相似文献   

5.
Following a summer drought, intact cores of peat soil from two cool temperate peatlands (a rain-fed bog and a groundwater-fed swamp) were exposed experimentally to three different water table levels. The goal was to examine recovery of anaerobic methanogenesis and to evaluate peat soil decomposition to methane (CH4), carbon dioxide (CO2), and dissolved organic carbon (DOC) upon rewetting. Methane emission from soils to the atmosphere was greatest (mean = 80 μmol m?2 s?1) when the entire peat core was rewetted quickly; emission was negligible at low water level and when peat cores were rewetted gradually. Rates of CO2 emission (mean = 1.0 μmol m?2 s?1) were relatively insensitive to water level. Concentrations of CH4 in soil air spaces suggest that onset of methanogenesis induces, but later represses, aerobic oxidation of CH4 above the water table. Concentrations of CO2 suggest production at the soil surface of swamp peat versus at greater depths in bog peat. Portions of peat soil incubated in vitro without oxygen (O2) exhibited a lag before the onset of methanogenesis, and the lag time was less in peat from the cores rewetted quickly. The inhibition of methanogenesis by the selective inhibitor 2-bromoethanesulfonic acid (BES) decreased CO2 production by 20 to 30% but resulted in an increase in concentrations of DOC by 2 to 5 times. The results show that methanogens in peat soils tolerate moderate drought, and recovery varies among different peat types. In peat soils, the inhibition of methanogenesis might enhance DOC availability.  相似文献   

6.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

7.
Freshwaters are important sources of the greenhouse gases methane (CH4) and carbon dioxide (CO2) to the atmosphere. Knowledge about temporal variability in these fluxes is very limited, yet critical for proper study design and evaluating flux data. Further, to understand the reasons for the variability and allow predictive modeling, the temporal variability has to be related to relevant environmental variables. Here we analyzed the effect of weather variables on CH4 and CO2 flux from a small shallow pond during a period of 4 months. Mean CH4 flux and surface water CH4 concentration were 8.0 [3.3–15.1] ± 3.1 mmol m?2 day?1 (mean [range] ± 1 SD) and 1.3 [0.3–3.5] ± 0.9 µM respectively. Mean CO2 flux was 1.1 [?9.8 to 16.0] ± 6.9 mmol m?2 day?1. Substantial diel changes in CO2 flux and surface water CH4 concentration were observed during detailed measurements over a 24 h cycle. Thus diel patterns need to be accounted for in future measurements. Significant positive correlations of CH4 emissions with temperature were found and could include both direct temperature effects as well as indirect effects (e.g. related to the growth season and macrophyte primary productivity providing organic substrates). CO2 flux on the other hand was negatively correlated to temperature and solar radiation, presumably because CO2 consumption by plants was higher relative to CO2 production by respiration during warm sunny days. Interestingly, CH4 fluxes were comparable to ponds with similar morphometry and macrophyte abundance in the tropics. We therefore hypothesize that CH4 and CO2 summer emissions from ponds could be more related to the morphometry and dominating primary producers rather than latitude per se. Data indicate that CH4 emissions, given the system characteristic frameworks, is positively affected by increased temperatures or prolonged growth seasons.  相似文献   

8.
A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2–3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (?14C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. ?14C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45–55 cm thaw depth), while CO2 from the ambient snow areas was ~100 years old (30-cm thaw depth). Heterotrophic respiration ?14C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere.  相似文献   

9.
Regional quantification of arctic CO2 and CH4 fluxes remains difficult due to high landscape heterogeneity coupled with a sparse measurement network. Most of the arctic coastal tundra near Barrow, Alaska is part of the thaw lake cycle, which includes current thaw lakes and a 5500‐year chronosequence of vegetated thaw lake basins. However, spatial variability in carbon fluxes from these features remains grossly understudied. Here, we present an analysis of whole‐ecosystem CO2 and CH4 fluxes from 20 thaw lake cycle features during the 2011 growing season. We found that the thaw lake cycle was largely responsible for spatial variation in CO2 flux, mostly due to its control on gross primary productivity (GPP). Current lakes were significant CO2 sources that varied little. Vegetated basins showed declining GPP and CO2 sink with age (R2 = 67% and 57%, respectively). CH4 fluxes measured from a subset of 12 vegetated basins showed no relationship with age or CO2 flux components. Instead, higher CH4 fluxes were related to greater landscape wetness (R2 = 57%) and thaw depth (additional R2 = 28%). Spatial variation in CO2 and CH4 fluxes had good satellite remote sensing indicators, and we estimated the region to be a small CO2 sink of ?4.9 ± 2.4 (SE) g C m?2 between 11 June and 25 August, which was countered by a CH4 source of 2.1 ± 0.2 (SE) g C m?2. Results from our scaling exercise showed that developing or validating regional estimates based on single tower sites can result in significant bias, on average by a factor 4 for CO2 flux and 30% for CH4 flux. Although our results are specific to the Arctic Coastal Plain of Alaska, the degree of landscape‐scale variability, large‐scale controls on carbon exchange, and implications for regional estimation seen here likely have wide relevance to other arctic landscapes.  相似文献   

10.
Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2) and methane (CH4) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at ?5, ?0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at ?0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4‐C gC?1 at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R2 = 0.81) in SOC. Carbon emissions (CO2‐C + CH4‐C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.  相似文献   

11.
The currently observed Arctic warming will increase permafrost degradation followed by mineralization of formerly frozen organic matter to carbon dioxide (CO2) and methane (CH4). Despite increasing awareness of permafrost carbon vulnerability, the potential long‐term formation of trace gases from thawing permafrost remains unclear. The objective of the current study is to quantify the potential long‐term release of trace gases from permafrost organic matter. Therefore, Holocene and Pleistocene permafrost deposits were sampled in the Lena River Delta, Northeast Siberia. The sampled permafrost contained between 0.6% and 12.4% organic carbon. CO2 and CH4 production was measured for 1200 days in aerobic and anaerobic incubations at 4 °C. The derived fluxes were used to estimate parameters of a two pool carbon degradation model. Total CO2 production was similar in Holocene permafrost (1.3 ± 0.8 mg CO2‐C gdw?1 aerobically, 0.25 ± 0.13 mg CO2‐C gdw?1 anaerobically) as in 34 000–42 000‐year‐old Pleistocene permafrost (1.6 ± 1.2 mg CO2‐C gdw?1 aerobically, 0.26 ± 0.10 mg CO2‐C gdw?1 anaerobically). The main predictor for carbon mineralization was the content of organic matter. Anaerobic conditions strongly reduced carbon mineralization since only 25% of aerobically mineralized carbon was released as CO2 and CH4 in the absence of oxygen. CH4 production was low or absent in most of the Pleistocene permafrost and always started after a significant delay. After 1200 days on average 3.1% of initial carbon was mineralized to CO2 under aerobic conditions while without oxygen 0.55% were released as CO2 and 0.28% as CH4. The calibrated carbon degradation model predicted cumulative CO2 production over a period of 100 years accounting for 15.1% (aerobic) and 1.8% (anaerobic) of initial organic carbon, which is significantly less than recent estimates. The multiyear time series from the incubation experiments helps to more reliably constrain projections of future trace gas fluxes from thawing permafrost landscapes.  相似文献   

12.
Permafrost thawing in lowland Arctic tundra results in a polygonal patterned landscape and the formation of numerous small ponds. These ponds emit biologically mediated carbon dioxide (CO2) and methane (CH4). Their greenhouse gas (GHG) emissions are variable, for reasons that are not well understood. Emissions are related to a balance between GHG producers and consumers, as well as to physical properties of the water column controlling gas exchange rates with the atmosphere. Here, we investigated the bacterial diversity of polygonal and runnel ponds, two geomorphologically distinct pond types commonly found in continuous permafrost regions. Using a combination of 16S rRNA Sanger sequencing and high-throughput amplicon sequencing, we found that bacterial communities in overlying waters were clearly dominated by carbon degraders and were similar in both pond types, despite their variable physical and chemical properties. However, surface sediment communities in the two pond types were significantly different. Polygonal pond sediment was colonized by carbon degraders (46–29 %), cyanobacteria (20–27 %) that take up CO2 and produce oxygen, and methanotrophs (11–20 %) that consume CH4 and require oxygen. In contrast, cyanobacteria were effectively absent from the surface sediment of runnel ponds, which in addition to carbon degraders (65–81 %), were colonized by purple non-sulfur bacteria (5–21 %), and by fewer methanotrophs (1–5 %). The link between the methanotrophic community and the type of ponds could potentially be used to improve upscale estimates of GHG emissions based on landscape morphology in such remote regions.  相似文献   

13.
The vast majority of lakes examined worldwide emit CO2 to the overlying atmosphere, through a process by which catchment-derived subsidies of terrigenous C, often in the form of dissolved organic carbon (DOC), augment within-lake CO2 production above the level consumed via photosynthesis. We show that shallow, macrophyte-rich lakes of the Mackenzie Delta, western Canadian Arctic, do not follow this pattern. These lakes are strong summertime CO2 absorbers, despite DOC concentrations at or above levels commonly shown to produce CO2 emission. Paradoxically, CO2 levels were lowest where DOC was greatest, in lakes which appear to be annual net CO2 absorbers, and have poor hydrologic connection to the terrestrial landscape. CO2 in these lakes is depleted by high macrophyte productivity, and although catchment-derived C subsidies are low, within-lake DOC generation appears to occur as a byproduct of macrophyte photosynthesis and evapoconcentration. Additionally, after accounting for DOC and macrophytes, lakes that were least connected to the larger terrestrial landscape remained weaker CO2 absorbers, suggesting that CO2 balance may also be affected by DOC quality, foodweb structure, or inputs of pCO2-rich riverwater to connected lakes. In contrast, a small subset of Delta lakes that were strongly affected by permafrost melting were CO2 emitters, suggesting future permafrost degradation could engender a change in the overall CO2 balance of these lakes from near-CO2 neutral over the ice-free season, to clear CO2 emission. Our work suggests that the current paradigm of lakewater CO2 regulation may need to specifically incorporate shallow, productive lakes, and those that are poorly connected to their surrounding landscape. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. ST, LL, and RH designed the study, ST performed research, ST analyzed data, ST, LL, and RH wrote the paper.  相似文献   

14.
The landscape of the Barrow Peninsula in northern Alaska is thought to have formed over centuries to millennia, and is now dominated by ice‐wedge polygonal tundra that spans drained thaw‐lake basins and interstitial tundra. In nearby tundra regions, studies have identified a rapid increase in thermokarst formation (i.e., pits) over recent decades in response to climate warming, facilitating changes in polygonal tundra geomorphology. We assessed the future impact of 100 years of tundra geomorphic change on peak growing season carbon exchange in response to: (i) landscape succession associated with the thaw‐lake cycle; and (ii) low, moderate, and extreme scenarios of thermokarst pit formation (10%, 30%, and 50%) reported for Alaskan arctic tundra sites. We developed a 30 × 30 m resolution tundra geomorphology map (overall accuracy:75%; Kappa:0.69) for our ~1800 km² study area composed of ten classes; drained slope, high center polygon, flat‐center polygon, low center polygon, coalescent low center polygon, polygon trough, meadow, ponds, rivers, and lakes, to determine their spatial distribution across the Barrow Peninsula. Land‐atmosphere CO2 and CH4 flux data were collected for the summers of 2006–2010 at eighty‐two sites near Barrow, across the mapped classes. The developed geomorphic map was used for the regional assessment of carbon flux. Results indicate (i) at present during peak growing season on the Barrow Peninsula, CO2 uptake occurs at ‐902.3 106gC‐COday?1 (uncertainty using 95% CI is between ?438.3 and ?1366 106gC‐COday?1) and CH4 flux at 28.9 106gC‐CHday?1(uncertainty using 95% CI is between 12.9 and 44.9 106gC‐CHday?1), (ii) one century of future landscape change associated with the thaw‐lake cycle only slightly alter CO2 and CH4 exchange, while (iii) moderate increases in thermokarst pits would strengthen both CO2 uptake (?166.9 106gC‐COday?1) and CH4 flux (2.8 106gC‐CHday?1) with geomorphic change from low to high center polygons, cumulatively resulting in an estimated negative feedback to warming during peak growing season.  相似文献   

15.
Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed‐chamber technique from August to November 2003 and from August 2006 to July 2007 on tree‐covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high‐resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha−1 yr−1) than for soils with permafrost (0.37 kg CH4 ha−1 yr−1). In well‐drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha−1 yr−1). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha−1 yr−1). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha−1 yr−1. Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.  相似文献   

16.
Recent observations suggest that permafrost thaw may create two completely different soil environments: aerobic in relatively well‐drained uplands and anaerobic in poorly drained wetlands. The soil oxygen availability will dictate the rate of permafrost carbon release as carbon dioxide (CO2) and as methane (CH4), and the overall effects of these emitted greenhouse gases on climate. The objective of this study was to quantify CO2 and CH4 release over a 500‐day period from permafrost soil under aerobic and anaerobic conditions in the laboratory and to compare the potential effects of these emissions on future climate by estimating their relative climate forcing. We used permafrost soils collected from Alaska and Siberia with varying organic matter characteristics and simultaneously incubated them under aerobic and anaerobic conditions to determine rates of CO2 and CH4 production. Over 500 days of soil incubation at 15 °C, we observed that carbon released under aerobic conditions was 3.9–10.0 times greater than anaerobic conditions. When scaled by greenhouse warming potential to account for differences between CO2 and CH4, relative climate forcing ranged between 1.5 and 7.1. Carbon release in organic soils was nearly 20 times greater than mineral soils on a per gram soil basis, but when compared on a per gram carbon basis, deep permafrost mineral soils showed carbon release rates similar to organic soils for some soil types. This suggests that permafrost carbon may be very labile, but that there are significant differences across soil types depending on the processes that controlled initial permafrost carbon accumulation within a particular landscape. Overall, our study showed that, independent of soil type, permafrost carbon in a relatively aerobic upland ecosystems may have a greater effect on climate when compared with a similar amount of permafrost carbon thawing in an anaerobic environment, despite the release of CH4 that occurs in anaerobic conditions.  相似文献   

17.
Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open‐top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of ?300 to ?198 g CO2–eq m?2 to a source of 105 to 144 g CO2–eq m?2. At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2, we provide here the first in situ evidence of increasing N2O emissions from tundra soils with warming. Warming promoted N2O release not only from bare peat, previously identified as a strong N2O source, but also from the abundant, vegetated peat surfaces that do not emit N2O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic.  相似文献   

18.
Vernal pools are small, seasonal wetlands that are a common landscape feature contributing to biodiversity in northeastern North American forests. Basic information about their biogeochemical functions, such as carbon cycling, is limited. Concentrations of dissolved methane (CH4) and carbon dioxide (CO2) and other water chemistry parameters were monitored weekly at the bottom and surface of four vernal pools in central and eastern Maine, USA, from April to August 2016. The vernal pools were supersaturated with respect to CH4 and CO2 at all sampling dates and locations. Concentrations of dissolved CH4 and CO2 ranged from 0.4 to 210 μmol L?1 and 72–2300 μmol L?1, respectively. Diffusive fluxes of CH4 and CO2 into the atmosphere ranged from 0.2 to 73 mmol m?2 d?1, and 30–590 mmol m?2 d?1, respectively. During the study period, the four vernal pools emitted 0.1–5.8 kg C m?2 and 9.6–120 kg C m?2 as CH4 and CO2, respectively. The production fluxes (production rates normalized to surface area) of CH4 and CO2 ranged from ? 0.02 to 0.66 and 0.40–4.6 g C m?2 d?1, respectively, and increased significantly over the season. Methane concentrations were best predicted by alkalinity, ortho-phosphate and depth, while CO2 concentrations were best predicted with only alkalinity. Alkalinity as a predictor variable highlights the importance of anaerobic respiration in production of both gases. Our study pools had large concentrations and effluxes of CH4 and CO2 compared to permanently inundated wetlands, indicating vernal pools are metabolically active sites and may be important contributors to the global carbon budget.  相似文献   

19.
Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large‐scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape‐level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer‐term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.  相似文献   

20.
Inland waters were recently recognized to be important sources of methane (CH4) and carbon dioxide (CO2) to the atmosphere, and including inland water emissions in large scale greenhouse gas (GHG) budgets may potentially offset the estimated carbon sink in many areas. However, the lack of GHG flux measurements and well‐defined inland water areas for extrapolation, make the magnitude of the potential offset unclear. This study presents coordinated flux measurements of CH4 and CO2 in multiple lakes, ponds, rivers, open wells, reservoirs, springs, and canals in India. All these inland water types, representative of common aquatic ecosystems in India, emitted substantial amounts of CH4 and a major fraction also emitted CO2. The total CH4 flux (including ebullition and diffusion) from all the 45 systems ranged from 0.01 to 52.1 mmol m?2 d?1, with a mean of 7.8 ± 12.7 (mean ± 1 SD) mmol m?2 d?1. The mean surface water CH4 concentration was 3.8 ± 14.5 μm (range 0.03–92.1 μm ). The CO2 fluxes ranged from ?28.2 to 262.4 mmol m?2 d?1 and the mean flux was 51.9 ± 71.1 mmol m?2 d?1. The mean partial pressure of CO2 was 2927 ± 3269 μatm (range: 400–11 467 μatm). Conservative extrapolation to whole India, considering the specific area of the different water types studied, yielded average emissions of 2.1 Tg CH4 yr?1 and 22.0 Tg CO2 yr?1 from India's inland waters. When expressed as CO2 equivalents, this amounts to 75 Tg CO2 equivalents yr?1 (53–98 Tg CO2 equivalents yr?1; ± 1 SD), with CH4 contributing 71%. Hence, average inland water GHG emissions, which were not previously considered, correspond to 42% (30–55%) of the estimated land carbon sink of India. Thereby this study illustrates the importance of considering inland water GHG exchange in large scale assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号