首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycosphingolipids (GSLs) accumulate in cholesterol-enriched cell membrane domains and provide receptors for protein ligands. Lipid-based “aglycone” interactions can influence GSL carbohydrate epitope presentation. To evaluate this relationship, Verotoxin binding its receptor GSL, globotriaosyl ceramide (Gb3), was analyzed in simple GSL/cholesterol, detergent-resistant membrane vesicles by equilibrium density gradient centrifugation. Vesicles separated into two Gb3/cholesterol-containing populations. The lighter, minor fraction (<5% total GSL), bound VT1, VT2, IgG/IgM mAb anti-Gb3, HIVgp120 or Bandeiraea simplicifolia lectin. Only IgM anti-Gb3, more tolerant of carbohydrate modification, bound both vesicle fractions. Post-embedding cryo-immuno-EM confirmed these results. This appears to be a general GSL-cholesterol property, because similar receptor-inactive vesicles were separated for other GSL-protein ligand systems; cholera toxin (CTx)-GM1, HIVgp120-galactosyl ceramide/sulfatide. Inclusion of galactosyl or glucosyl ceramide (GalCer and GlcCer) rendered VT1-unreactive Gb3/cholesterol vesicles, VT1-reactive. We found GalCer and GlcCer bind Gb3, suggesting GSL-GSL interaction can counter cholesterol masking of Gb3. The similar separation of Vero cell membrane-derived vesicles into minor “binding,” and major “non-binding” fractions when probed with VT1, CTx, or anti-SSEA4 (a human GSL stem cell marker), demonstrates potential physiological relevance. Cell membrane GSL masking was cholesterol- and actin-dependent. Cholesterol depletion of Vero and HeLa cells enabled differential VT1B subunit labeling of “available” and “cholesterol-masked” plasma membrane Gb3 pools by fluorescence microscopy. Thus, the model GSL/cholesterol vesicle studies predicted two distinct membrane GSL formats, which were demonstrated within the plasma membrane of cultured cells. Cholesterol masking of most cell membrane GSLs may impinge many GSL receptor functions.  相似文献   

2.
The isolation of plasma membrane from human peripheral blood monocytes is described. Monocytes were isolated by centrifugal elutriation, to eliminate an adherence step, thus minimizing functional and surface antigenic alterations to the cells. Monocytes were surface-labelled with a radiolabelled monoclonal antibody, 125I-WVH-1, and then disrupted by nitrogen cavitation. Membranes were separated according to equilibrium buoyant density by isopycnic centrifugation on a sucrose gradient. The subcellular membranes were localized using marker enzymes for the plasma membrane, 5'-nucleotidase and leucine 2-naphthylamidase (leucine aminopeptidase), and for intracellular membranes: galactosyltransferase (Golgi), arylsulfatase C (endoplasmic reticulum), monoamine oxidase (mitochondria), catalase (peroxisomes), beta-hexosaminidase and beta-glucuronidase (lysosomal vesicles) and lactate dehydrogenase (cytosol). The monoclonal antibody 125I-WVH-1 was shown to label the plasma membrane, as judged by known markers, and represents a highly specific trace label, applicable to the use of plasma membrane as an immunogen for monoclonal antibody production. The NAD-splitting enzyme, NAD+ nucleosidase, was detected and its presence on the plasma membrane was demonstrated. The subcellular localization of non-specific esterase in human mononuclear phagocytes is controversial. No evidence was found for alpha-naphthyl acetate esterase activity on the plasma membrane or in lysosomal vesicles. However, a membrane-bound esterase in fractions with properties similar to the smooth endoplasmic reticulum was detected.  相似文献   

3.
Detection of intracellular phosphatidylserine in living cells   总被引:2,自引:0,他引:2  
To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.  相似文献   

4.
Human lymphocytes were isolated from defibrinated blood by Ficoll-Hypaque centrifugation with erythrocyte hypotonic lysis. Homogenates of mixed lymphocytes were subjected to analytical subcellular fractionation by sucrose gradient centrifugation in a Beaufay automatic zonal rotor. The principal organelles were characterized by their marker enzymes: cytosol (lactate dehydrogenase), plasma membrane (5′-nucleotidase), endoplasmic reticulum (neutral α-glucosidase), mitochondria (malate dehydrogenase), lysosomes (N-acetyl-β-glucosaminidase), peroxisomes (catalase). γ-Glutamyl transferase was exclusively localized to the plasma membrane. Leucine amino-peptidase, especially when assayed in the presence of Co2+, was also partially localized to the plasma membrane. Experiments with diazotized sulphanilic acid, a non-permeant enzyme inhibitor, showed that these plasma membrane enzymes are present on the cell surface. No detectable alkaline phosphatase was found in the lymphocytes. Acid phosphatase and β-glucuronidase were localized to lysosomes and there was some evidence for lysosomal heterogeneity. Leucine amino peptidase, optimal at pH 8.0, showed a partial localization to intracellular vesicles, possibly lysosomes, especially when assayed in the presence of EDTA. These studies provide a technique for determining the intracellular distribution of hitherto unassigned lymphocyte constituents and serve as a basis for investigating the cell pathology of lymphocytic disorders.  相似文献   

5.
Whole mounts, cryosections, and isolated cortices of unfertilized sea urchin eggs were probed with fluorescent phalloidin, anti-actin and anti-egg spectrin antibodies to investigate the organizational state of the cortically associated actin-membrane cytoskeleton. Filamentous actin and egg spectrin were localized to the plasma membrane, within microvillar and nonmicrovillar domains. The nonmicrovillar filamentous actin was located immediately subjacent to the microvilli forming an extensive interconnecting network along the inner surface of the plasma membrane. The organization of this filamentous actin network precisely correlated with the positioning of the underlying cortical granules. The cortical cytoplasm did not contain any detectable filamentous actin, but instead contained a sequestered domain of nonfilamentous actin. Spectrin was localized to the cytoplasmic surface of the plasma membrane with concentrated foci co-localized with the filamentous actin present in microvilli. Spectrin was also observed to coat the surfaces of cortical granules as well as other populations of intracellular vesicles. On the basis of light microscopic morphology, intracellular distribution, and co-isolation with the egg cortex, some of these spectrin-coated organelles represent acidic vesicles. Identification of an elaborate organization of inter-related domains of actin (filamentous and nonfilamentous) and spectrin forming the cortical membrane cytoskeleton provides insight into the fundamental mechanisms for early membrane restructuring during embryogenesis. Additionally, the localization of spectrin to the surface of intracellular vesicles is indicative of its newly identified functional roles in membrane trafficking, membrane biogenesis and cellular differentiation.  相似文献   

6.
Eukaryotic cells possess highly sophisticated membrane trafficking pathways that define specific membrane domains and provide a means for moving vesicles between them (Mostov, Su, and ter Beest, 2003, Nat. Cell Biol. 5, 287-293). Here, I review recent data that indicate a role for membrane trafficking in mRNA localization. Specifically, I review evidence that some localized mRNAs are anchored to specific membrane domains and/or transported on membranous organelles or vesicles to specific subcellular sites. This review is not intended as a discussion on indirect influences of membrane trafficking on mRNA localization. I will not, for example, discuss the role of membrane trafficking in the regulation of extracellular signalling events that could indirectly influence mRNA localization through polarization of the actin or microtubule cytoskeleton (for examples, see reviews by Drubin and Nelson, 1996, Cell 84, 335-344; Shulman and St Johnston, 1999, Trends Cell Biol. 9, M60-M64).  相似文献   

7.
Immunofluorescence microscopy of cultured animal cells is often performed after detergent permeabilization of formaldehyde-fixed cellular membranes so that antibodies may have access to intracellular antigens. A comparison was made of the ability of several detergents, after formaldehyde fixation, to affect localization of intracellular proteins or to permeabilize different organelles to antibodies. Saponin, a detergent-like molecule that can permeabilize cholesterol-containing membranes, was also used. Four monoclonal antibodies were found to have a bright, discrete fluorescence localization with saponin alone, but were almost undetectable when the cells were treated with nonionic detergents such as Triton X-100 or NP-40. These immunoglobulin G antibodies included two against lysosomal membrane glycoproteins, one against an integral membrane protein found in the plasma membrane and endocytic vesicles, and one against a membrane protein in the endoplasmic reticulum and the nuclear envelope. However, antigens localized in mitochondria and the nucleus required the use of a detergent such as Triton X-100 for their detection. The detection of a number of other membrane or cytoplasmic proteins was unaffected by Triton X-100 treatment. It was concluded that nonionic detergents such as Triton X-100 cause artifactual loss of detection of some membrane proteins, and saponin is a favorable alternative reagent for immunofluorescence detection of intracellular membrane antigens in many organelles.  相似文献   

8.
1. Six neutral GSL fractions were purified from porcine erythrocyte membranes. 2. They were identified to be LacCer (14% of total neutral GSLs), 2-hydroxy acid-rich and -poor Gb3Cer (3 and 7%, respectively) and Gb4Cer (71%) by means of NMR spectrometry. 3. Monohexosylceramides (5%) were composed of GlcCer and GalCer with near amount. 4. All these GSL classes contained a high concentration (more than 20% of total acids in each class) of 2-hydroxy fatty acids. 5. GalCer and GlcCer contained considerable amounts of C16- and C18-acids, and of C18-phytosphingosine, whereas C24-acids and C18-sphingosine were predominant in the other GSLs. 6. A minor GSL fraction (less than 1% of total neutral GSLs) which migrated more slowly than Gb5Cer on a thin layer plate and composed of several GSL components contained L-fucose.  相似文献   

9.
A cell is surrounded by a plasma membrane. It contains various organelles, most of which are enclosed by limiting membranes. The intracellular space is thus divided into a number of subcellular compartments. Structurally, a cell is composed of membranes and the spaces enclosed by those membranes. In order to classify these compartments, the extracellular space has been designated S1 and whenever a unit membrane structure is crossed to arrive at the next space, one is added to term; the cytoplasmic space becomes S2, the intraluminal space of the endoplasmic reticulum and the intermembrane space of the mitochondria S3, and the matrix space of the mitochondria S4. Similarly, the plasma membrane is M1, the outer membrane of the mitochondria M2, and the inner counterpart M3. This classification of the subcellular compartments is useful in understanding a number of complicated cellular structures and functions. The intracellular transport of newly synthesized protein (protein topogenesis) and the probable development of subcellular organelles during phylogenesis of eukaryotic cells is discussed in terms of these subcellular compartments.  相似文献   

10.
《The Journal of cell biology》1993,121(5):997-1010
Multiple immunolabeling of cryosections was performed to compare the subcellular distributions of the two mannose 6-phosphate receptors (MPRs) involved in the intracellular targeting of lysosomal enzymes: the cation-dependent (CD) and cation-independent (CI) MPR. In two cell types, the human hepatoma cell line HepG2 and BHK cells double transfected with cDNA's encoding for the human CD-MPR and CI-MPR, we found the two receptors at the same sites: the trans-Golgi reticulum (TGR), endosomes, electron-dense cytoplasmic vesicles, and the plasma membrane. In the TGR the two receptors colocalized and were concentrated to the same extent in the same HA I-adaptor positive coated buds and vesicles. Endosomes were identified by the presence of exogenous tracers. The two MPR codistributed to the same endosomes, but semiquantitative analysis showed a relative enrichment of the CI-MPR in endosomes containing many internal vesicles. Two endosomal subcompartments were discerned, the central vacuole and the associated tubules and vesicles (ATV). We found an enrichment of CD-MPR over CI- MPR in the ATV. Lateral segregation of the two receptors within the plane of membranes was also detected on isolated organelles. Double immunolabeling for the CD-MPR and the asialoglycoprotein receptor, which mainly recycles between endosomes and the plasma membrane, revealed that these two receptors were concentrated in different subpopulations of endosomal ATV. The small GTP-binding protein rab4, which has been shown to mediate recycling from endosomes to the plasma membrane, was localized at the cytosolic face of many endosomal ATV. Quantitative analysis of double-immunolabeled cells revealed only a limited codistribution of the MPRs and rab4 in ATV. These data suggest that the two MPRs exit the TGR via the same coated vesicles, but that upon arrival in the endosomes CD-MPR is more rapidly than CI-MPR, segregated into ATV which probably are destined to recycle MPRs to TGR.  相似文献   

11.
The subcellular localization in anterior pituitary secretory cells of annexin II, one of the Ca2+-dependent phospholipid-binding proteins, was examined by immunohistochemistry and immunoelectron microscopy. Annexin II was associated with the plasma membrane, the membranes of secretory granules and cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria and vesicles, and with the nuclear envelope. Annexin II was frequently detected at the contact sites of secretory granules with other granules and with the plasma membrane. The anterior pituitary and adrenal medulla were treated with Clostridium perfringens enterotoxin, which induces Ca2+ influx, and examined under an electron microscope. The anterior pituitary cells showed multigranular exocytosis, i.e. multiple fusions of secretory granules with each other and with the plasma membrane, but adrenal chromaffin cells, which lack annexin II on the granule membranes, never showed granule--granule fusion and only single granule exocytosis. From these results, we conclude that, in anterior pituitary secretory cells, annexin II is involved in granule--granule fusion in addition to granule--plasma membrane fusion. © 1998 Chapman & Hall  相似文献   

12.
Internalization of some plasma membrane constituents, bacterial toxins, and viruses occurs via caveolae; however, the factors that regulate caveolar internalization are still unclear. Here, we demonstrate that a brief treatment of cultured cells with natural or synthetic glycosphingolipids (GSLs) or elevation of cholesterol (either by acute treatment with mbeta-cyclodextrin/cholesterol or by alteration of growth conditions) dramatically stimulates caveolar endocytosis with little or no effect on other endocytic mechanisms. These treatments also stimulated the movement of GFP-labeled vesicles in cells transfected with caveolin-1-GFP and reduced the number of surface-connected caveolae seen by electron microscopy. In contrast, overexpression of caveolin-1 decreased caveolar uptake, but treatment with GSLs reversed this effect and stimulated caveolar endocytosis. Stimulation of caveolar endocytosis did not occur using ceramide or phosphatidylcholine and was not due to GSL degradation because similar results were obtained using a nonhydrolyzable GSL analog. Stimulated caveolar endocytosis required src kinase and PKC-alpha activity as shown by i) use of pharmacological inhibitors, ii) expression of kinase inactive src or dominant negative PKCalpha, and iii) stimulation of src kinase activity upon addition of GSLs or cholesterol. These results suggest that caveolar endocytosis is regulated by a balance of caveolin-1, cholesterol, and GSLs at the plasma membrane.  相似文献   

13.
Endocytosis leads to the internalisation of both lipids and proteins and their delivery to specific subcellular locations. This involves sorting processes that are not completely understood, but may involve interactions between lipids and proteins as well as pH and calcium gradients. This article discusses the importance of endocytosis in glycosphingolipid (GSL) synthesis as well as the potential roles of GSLs in endocytic membrane transport. Although the accumulation of GSLs in storage diseases clearly disrupts endocytic transport, increasing evidence also supports a role for GSLs in endocytosis in normal cells.  相似文献   

14.
Mammalian glycosphingolipid (GSL) precursor monohexosylceramides are either glucosyl- or galactosylceramide (GlcCer or GalCer). Most GSLs derive from GlcCer. Substitution of the GSL fatty acid with adamantane generates amphipathic mimics of increased water solubility, retaining receptor function. We have synthesized adamantyl GlcCer (adaGlcCer) and adamantyl GalCer (adaGalCer). AdaGlcCer and adaGalCer partition into cells to alter GSL metabolism. At low dose, adaGlcCer increased cellular GSLs by inhibition of glucocerebrosidase (GCC). Recombinant GCC was inhibited at pH 7 but not pH 5. In contrast, adaGalCer stimulated GCC at pH 5 but not pH 7 and, like adaGlcCer, corrected N370S mutant GCC traffic from the endoplasmic reticulum to lysosomes. AdaGalCer reduced GlcCer levels in normal and lysosomal storage disease (LSD) cells. At 40 μM adaGlcCer, lactosylceramide (LacCer) synthase inhibition depleted LacCer (and more complex GSLs), such that only GlcCer remained. In Vero cell microsomes, 40 μM adaGlcCer was converted to adaLacCer, and LacCer synthesis was inhibited. AdaGlcCer is the first cell LacCer synthase inhibitor. At 40 μM adaGalCer, cell synthesis of only Gb(3) and Gb(4) was significantly reduced, and a novel product, adamantyl digalactosylceramide (adaGb(2)), was generated, indicating substrate competition for Gb(3) synthase. AdaGalCer also inhibited cell sulfatide synthesis. Microsomal Gb(3) synthesis was inhibited by adaGalCer. Metabolic labeling of Gb(3) in Fabry LSD cells was selectively reduced by adaGalCer, and adaGb(2) was produced. AdaGb(2) in cells was 10-fold more effectively shed into the medium than the more polar Gb(3), providing an easily eliminated "safety valve" alternative to Gb(3) accumulation. Adamantyl monohexosyl ceramides thus provide new tools to selectively manipulate normal cellular GSL metabolism and reduce GSL accumulation in cells from LSD patients.  相似文献   

15.
The subcellular distribution of glucose transporters in rat hepatocytes and HepG2 cells was studied in the absence and in the presence of insulin. Glucose transporters were quantitated by measuring glucose-sensitive cytochalasin B binding and by protein immunoblotting using isoform-specific antibodies. Plasma membrane contamination into subcellular fractions was assessed by measuring distribution of 5'-nucleotidase and cell surface carbohydrate label. In hepatocytes, GLUT-2 occurred in a low-density microsomal (LDM) fraction at a significant concentration, and as much as 15% of cellular GLUT-2 was found intracellularly that cannot be accounted for by plasma membrane contamination. In HepG2 cells which express GLUT-1 and GLUT-2, the two isoforms showed distinct subcellular distribution patterns: GLUT-2 was highly concentrated in LDM while very little GLUT-1 was found in this fraction, indicating that a large portion of GLUT-2 occurs in intracellular organelles. Insulin treatment did not change the subcellular distribution patterns of glucose transporters in both cell types. Our results suggest that rat hepatocytes and HepG2 cells possess an intracellular storage pool for GLUT-2, but lack the insulin-responsive glucose transporter translocation mechanism.  相似文献   

16.
17.
Membranes of mammalian subcellular organelles contain defined amounts of specific phospholipids that are required for normal functioning of proteins in the membrane. Despite the wide distribution of most phospholipid classes throughout organelle membranes, the site of synthesis of each phospholipid class is usually restricted to one organelle, commonly the endoplasmic reticulum (ER). Thus, phospholipids must be transported from their sites of synthesis to the membranes of other organelles. In this article, pathways and subcellular sites of phospholipid synthesis in mammalian cells are summarized. A single, unifying mechanism does not explain the inter‐organelle transport of all phospholipids. Thus, mechanisms of phospholipid transport between organelles of mammalian cells via spontaneous membrane diffusion, via cytosolic phospholipid transfer proteins, via vesicles and via membrane contact sites are discussed. As an example of the latter mechanism, phosphatidylserine (PS) is synthesized on a region of the ER (mitochondria‐associated membranes, MAM) and decarboxylated to phosphatidylethanolamine in mitochondria. Some evidence is presented suggesting that PS import into mitochondria occurs via membrane contact sites between MAM and mitochondria. Recent studies suggest that protein complexes can form tethers that link two types of organelles thereby promoting lipid transfer. However, many questions remain about mechanisms of inter‐organelle phospholipid transport in mammalian cells.  相似文献   

18.
In order to study proteins of the melanosome, we developed a panel of antisera against various protein fractions of melanosomes from B16 melanoma cells. An antiserum raised against a Triton X-100 insoluble fraction of melanosomes recognized a 65-kDa protein in melanocytes from mice homozygous for the buff mutation, but not in their wild type counterparts. Further studies were conducted using a specific, second generation antiserum raised against the purified protein. The protein was also detected in melanocytes cultured from albino mice, but absent in cultured mouse cell lines not of melanocyte origin. Density gradient centrifugation of subcellular organelles and indirect immunofluorescent cell staining, indicated that the protein was associated with melanosomes and vesicles. The protein on intact organelles could be made soluble using sodium carbonate, and digested with proteases in the absence of detergent suggesting that it was a peripheral membrane protein localized on the cytosolic face of organelle membranes. Metabolic labelling of cells and N-glycosidase F digestion of cell extracts indicated that the protein was not N-glycosylated. Based on its intracellular localization and biochemical defects in the buff mouse, a potential role has been suggested for the 65-kDa protein in intracellular membrane trafficking.  相似文献   

19.
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.  相似文献   

20.
Obligate intracellular parasites of the phylum Apicomplexa exhibit gliding motility, a unique form of substrate-dependent locomotion essential for host cell invasion and shown to involve the parasite actin cytoskeleton and myosin motor(s). Toxoplasma gondii has been shown to express three class XIV myosins, TgM-A, -B, and -C. We identified an additional such myosin, TgM-D, and completed the sequences of a related Plasmodium falciparum myosin, PfM-A. Despite divergent structural features, TgM-A purified from parasites bound actin in an ATP-dependent manner. Isoform-specific antibodies revealed that TgM-A and recombinant mycTgM-A were localized right beneath the plasma membrane, and subcellular fractionation indicated a tight membrane association. Recombinant TgM-D also had a peripheral although not as sharply defined localization. Truncation of their respective tail domains abolished peripheral localization and tight membrane association. Conversely, fusion of the tails to green fluorescent protein (GFP) was sufficient to confer plasma membrane localization and sedimentability. The peripheral localization of TgM-A and of the GFP-tail fusion did not depend on an intact F-actin cytoskeleton, and the GFP chimera did not localize to the plasma membrane of HeLa cells. Finally, we showed that the specific localization determinants were in the very C terminus of the TgM-A tail, and site-directed mutagenesis revealed two essential arginine residues. We discuss the evidence for a proteinaceous plasma membrane receptor and the implications for the invasion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号