首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160°C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low 1st peak and significant 2nd peak.The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.  相似文献   

2.
Summary Several ground-based investigations have been carried out since the Viking biology results were received from Mars. Many of these have resulted in reasonable simulations of the Martian data, using as analogues of Mars either strong oxidants, UV-treated materials, iron-containing clays, or iron salts. The ambiguity between the GCMS experiment, in which no organic compounds were found on Mars, and the Labeled Release experiment, in which added organics were decomposed, may well be accounted for by these simulations.  相似文献   

3.
Summary During its operation on Mars the pyrolytic release experiment (PR) detected the fixation of small amounts of CO2 and/or CO. Laboratory simulations of the experimental conditions were made in an attempt to substantiate the previous conclusion that these reactions were chemical rather than biological. The selection of model substrata for these tests was based on the known properties of the Martian surface material. After pretreatment and incubation under various conditions, pyrolytic analysis was used to indicate the extent of surface catalyzed conversion of14CO2 or14CO to14C-organic compounds. This abiotic synthesis was detected in experiments with three iron oxides, viz. hematite, magnetite and maghemite. When the incubation atmosphere was supplemented with water vapor, the levels of synthesis were in a range comparable to that detected in the Viking PR tests. An abiotic synthesis was also detected in experiments with a mixture of clays and minerals (Mars analog soil) or with montmorillonite artifically enriched in iron. With either substratum the reaction appeared to be the result of a photocatalytic synthesis of14C-organics from14CO and surface hydroxyl groups. This process was not dependent on the presence of water vapor in the incubation atmosphere. Although a duplication of the Viking data has not been achieved, these findings support the abiotic interpretation of the PR results.  相似文献   

4.
The success of the lunar sample analysis programs underscores the desirability of a returned Martian sample. A Mission which would bring back about 1 kg of soil is outlined. The vehicle would have a mass of about 15 tonnes on departure from Earth and would make extensive use of Viking and Mariner technology. Russian experience in the field of automatic soil sampling and automatic rendezvous would be invaluable and the Shuttle would make possible a tidier launch. Sterilisation or quarantine will be necessary to preclude back-contamination of Earth by hypothetical Martian micro-organisms. A prime quarantine facility designed to detect biogenic organic compounds and life processes could be set up at a Lunar base or in a Sky-lab. A single soil sample could be informative as to the general surface composition of Mars. Life detection would be a major task, followed closely by the chemistry of carbon and other life-related elements. However, knowledge of the detailed physics, chemistry and mineralogy of the Martian sample would be of inestimable value to planetary studies.  相似文献   

5.
Summary One of the scientific objectives of the Viking Mission to Mars was to accomplish an analysis of water in the Martian regolith. The analytical scheme originally envisioned was severly compromised in the latter stages of the Lander instrument package design. Nevertheless, a crude soil water analysis was accomplished. Samples from each of the two widely separated sites yielded roughly 1 to 3% water by weight when heated successively to several temperatures up to 500°C. A significant portion of this water was released in the 200° to 350°C interval indicating the presence of mineral hydrates of relatively low thermal stability, a finding in keeping with the low temperatures generally prevailing on Mars. The presence of a duricrust at one of the Lander sites is taken as possible evidence for the presence of hygroscopic minerals on Mars. The demonstrated presence of atmospheric water vapor and thermodynamic calculations lead to the belief that adsorbed water could provide a relatively favorable environment for endolithic organisms on Mars similar to types recently discovered in the dry antarctic deserts.  相似文献   

6.
The Labeled Release extraterrestrial life detection experiment onboard the Viking spacecraft is described as it will be implemented on the surface of Mars in 1976. This experiment is designed to detect heterotrophic life by supplying a dilute solution of radioactive organic substrates to a sample of Martian soil and monitoring for evolution of radioactive gas. A significantly attenuated response by a heat-sterilized control sample of the same soil would confirm a positive metabolic response. Experimental assumptions as well as criteria for the selection of organic substrates are presented. The Labeled Release nutrient has been widely tested, is versatile in eliciting terrestrial metabolic responses, and is stable to heat sterilization and to the long-term storage required before its use on Mars. A testing program has been conducted with flight-like instruments to acquire science data relevant to the interpretation of the Mars experiment. Factors involved in the delineation of a positive result are presented and the significance of the possible results discussed.  相似文献   

7.
Soils of the terrestrial planets form at the boundaries between lithosphere, atmosphere and hydrosphere. Biogenesis occurred in these zones; thus, it is axiomatic that some, perhaps many, stages of biogensis occurred in intimate association with the mineral constituents of soils. Because of a high surface to mass ration and, consequently, a high surface reactivity, the layer lattice clay minerals are the most important of these. According to the geological record, clay minerals appeared very early on the primordial Earth. Recent investigations have confirmed their presence in carbonaceous meteorites and have indicated their occurrence on Mars. In this paper we collect pertinent physico-chemical data and summarize the organic reactions and interactions that are induced or catalyzed by clays. Many clay-organic reactions that do not occur readily at high water contents proceed rapidly at adsorbed water contents corresponding to surface coverages of one or two molecular layers. One or two monolayers of adsorbed water correspond to extremely dry or cold planetary environments. Some consequences of these facts vis á vis biogenesis on Mars are considered.  相似文献   

8.
Soils of the terrestrial planets form at the boundaries between lithosphere, atmosphere and hydrosphere. Biogenesis occurred in these zones; thus, it is axiomatic that some, perhaps many, stages of biogenesis occurred in intimate association with the mineral constituents of soils. Because of a high surface to mass ratio and, consequently, a high surface reactivity, the layer lattice clay minerals are the most important of these. according to the geological record, clay minerals appeared very early on the primordial Earth. Recent investigations have confirmed their presence in carbonaceous meteorites and have indicated their occurrence on Mars. In this paper we collect pertinent physico-chemical data and summarize the organic reactions and interactions that are induced or catalyzed by clays. Many clay-organic reactions that do not occur readily at high water contents proceed rapidly at adsorbed water contents corresponding to surface coverages of one or two molecular layers. One or two monolayers of adsorbed water correspond to extremely dry on cold planetary environments. Some consequences of these factsvis à vis biogenesis on Mars are considered.  相似文献   

9.
Summary A facility was established for long-duration ultraviolet (UV) radiation exposure of natural and synthetic materials in order to test hypotheses concerning Martian soil chemistry observed by the Viking Mars landers. The system utilized a 2500 watt xenon lamp as the radiation source, with the beam passing through a heat-dissipating water filter before impinging upon an exposure chamber containing the samples to be irradiated. The chamber was designed to allow for continuous tumbling of the samples, maintenance of temperatures below 0° during exposure, and monitoring of beam intensity. The facility also provided for sample preparation under a variety of atmospheric conditions, in addition to the Mars nominal. As many as 33 sealed sample ampules have been irradiated in a single exposure. Over 100 samples have been irradiated for approximately 100 to 700 h. The facility has performed well in providing continuous UV irradiation of multiple samples for long periods of time under simulated Mars atmospheric and thermal conditions.  相似文献   

10.
Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.  相似文献   

11.
Primitive terrestrial life – defined as a chemical system able to transfer its molecular information via self-replication and to evolve – probably originated from the evolution of reduced organic molecules in liquid water. Several sources have been proposed for the prebiotic organic molecules: terrestrial primitive atmosphere (methane or carbon dioxide), deep-sea hydrothermal systems, and extraterrestrial meteoritic and cometary dust grains. The study of carbonaceous chondrites, which contain up to 5% by weight of organic matter, has allowed close examination of the delivery of extraterrestrial organic material. Eight proteinaceous amino acids have been identified in the Murchison meteorite among more than 70 amino acids. Engel reported that l-alanine was surprisingly more abundant than d-alanine in the Murchison meteorite. Cronin also found excesses of l-enantiomers for nonprotein amino acids. A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50- to 100-μm size range, carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon, on average. They might have brought more carbon than that involved in the present surficial biomass. The early histories of Mars and Earth clearly show similarities. Liquid water was once stable on the surface of Mars, attesting the presence of an atmosphere capable of deccelerating C-rich micrometeorites. Therefore, primitive life may have developed on Mars as well and fossilized microorganisms may still be present in the near subsurface. The Viking missions to Mars in 1976 did not find evidence of either contemporary or past life, but the mass spectrometer on the lander aeroshell determined the atmospheric composition, which has allowed a family of meteorites to be identified as Martian. Although these samples are essentially volcanic in origin, it has been recognized that some of them contain carbonate inclusions and even veins that have a carbon isotopic composition indicative of an origin from Martian atmospheric carbon dioxide. The oxygen isotopic composition of these carbonate deposits allows calculation of the temperature regime existing during formation from a fluid that dissolved the carbon dioxide. As the composition of the fluid is unknown, only a temperature range can be estimated, but this falls between 0° and 90°C, which would seem entirely appropriate for life processes. It was such carbonate veins that were found to host putative microfossils. Irrespective of the existence of features that could be considered to be fossils, carbonate-rich portions of Martian meteorites tend to have material, at more than 1000 ppm, that combusts at a low temperature; i.e., it is an organic form of carbon. Unfortunately, this organic matter does not have a diagnostic isotopic signature so it cannot be unambiguously said to be indigenous to the samples. However, many circumstantial arguments can be made to the effect that it is cogenetic with the carbonate and hence Martian. If it could be proved that the organic matter was preterrestrial, then the isotopic fractionation between it and the carbon is in the right sense for a biological origin. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

12.
McKay et al. detected polycyclic aromatic hydrocarbons (PAHs) in Martian meteorite ALH 84001 by two-step laser mass spectrometry. From the presence of PAHs, together with other results, they concluded that there were past life of Mars. On the other hands, no organisms nor organic compounds were detected in Martian regolith in Viking experiments in 1976. In order to obtain solid evidence for organisms or bioorganic compounds compounds on Mars, further analyses of Martian samples are required. There may be four classes of organic compounds on Mars, which are (i) organic compounds abiotically formed from primitive Mars atmosphere, (ii) Organic compounds delivered out of Mars, (iii) Organic compounds biotically formed by Mars organisms, and (iv) Organic compounds abiotically formed from the present Mars atmosphere. Possible organic compounds on Mars and analytical methods for them are discussed.  相似文献   

13.
The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.  相似文献   

14.
Summary Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the Martian atmosphere and regolith. In this study the stability of several organic substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrozable content of the Murchison meteorite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.  相似文献   

15.
It is becoming increasingly important to improve spatial resolutions of soil maps as a fundamental information layer for studying ecological processes and to tackle land degradation. There is growing interest in the use of remote sensing technologies to assist the identification and delineation of spatial variation in soils. This paper investigates whether selected properties of extensively weathered, low fertility soils can be predicted using high-resolution reflectance spectra over the range 400–2500 nm. Clay content, carbonate concentration, organic carbon content and iron oxide content were analysed for 300 soil samples collected from the Jamestown, Belalie district, South Australia. The paper also examines the efficacy of this soil analysis methodology to supplement or replace traditional soil sampling in soil survey to increase sampling density and improve the spatial resolution of soil maps.Reflectance spectra were obtained from air-dried samples under controlled laboratory conditions using an ASD FieldSpec Pro spectroradiometer. Partial least squares regression was used to examine relationships between soil mineralogy, clay content and organic carbon and the reflectance spectra and identify the wavelengths contributing to prediction of these soil properties. Results show that it is possible to predict clay content, soil organic carbon, iron oxide content and carbonate content. Cross-validation R2 values for all analyses were above 0.5 and the residual prediction difference (RPD) was acceptable for all soil properties. Carbonate and clay content were more accurately predicted than iron oxide and organic carbon. All samples were collected from the same geographical area such that they represented physical properties over a naturally occurring range and provide a prediction that could be related to subsequent image analysis or be used to carry out local scale soil survey. A rapid and reliable form of soil mapping could be developed from this methodology.  相似文献   

16.
17.
The combination of analytical instrumentation selected for the molecular analysis experiment can carry out a survey of the organic compounds present on Mars regardless of their origin. The high sensitivity of this analysis, the limited number of samples which can be analyzed, the close proximity to the landed spacecraft on the surface of Mars which is accessible to the sampling device, the implications of the positive detection of indigenous organic matter in the Martian soil, and our previous experience with meteorites and lunar samples point to the need for a carefully designed program to maintain the inteprity of the analyzed Martian surface samples. A principal problem in interpreting the results of an organic analysis of an extraterrestrial sample is that of distinguishing contaminating material from indigenous material when unknown types and amounts of contaminants make their way into the sample being analyzed. An approach for control of sample integrity in the Viking molecular analysis experiment has been devised which we believe will eliminate such problems. Basically this involves (1) placing an upper limit on the amount of terrestrial contamination that can be tolerated and still allow scientifically meaningful analyses, (2) identifying the potential sources of contamination and analyzing their relative significance, (3) establishing methods to control these sources, and (4) obtaining complete information on the chemical composition of potential contaminants. Our previous experience in the Apollo mission has been of great value in developing the Viking program, perhaps the most important carryover being the recognition of the importance of establishing a comprehensive contamination control program in the early stages of mission planning and hardware design. The upper limit of total allowable organic contamination has been established as 1 μg g?1. The principal source types, or modes, which contribute to the contamination load have been identified, each requiring a different approach to control. Spacecraft outgassing is controlled by materials selection to minimize outgassing and hermetic sealing whenever possible. Particulate fallout is controlled by selection of materials, particulate seals, cleaning of the spacecraft exterior, and clean room handling. The cleanliness of the direct sample path is controlled by severe materials limitations, ultracleaning, and pressurized sealing of the assembled hardware. Analysis of the relative probabilities of the sources contributing to the allowable contamination and consideration of the practical aspects of achieving a desired level of control for a particular source has resulted in an allocation ‘tree’ whereby fractions of the total allowable contamination are distributed to the various individual sources. These efforts have pointed out the need for more information concerning some of these sources and have actually dictated certain design changes in the spacecraft. Additional information was obtained experimentally on descent engine exhaust characteristics which led to the use of an organically cleaner fuel. In summary, the early recognition in the Viking mission of the importance of organic contamination control has allowed the evolution of a complete contamination control program encompassing spacecraft design, mission operations, flight operations, and the design of the science instrumentation for the molecular analysis experiment.  相似文献   

18.
Summary Alkaline earth and alkali metal superoxides and peroxides,-Fe2O3 and carbon suboxide polymer are proposed to be constituents of the Martian surface material. These reactive substances explain the water modified reactions and thermal behaviors of the Martian samples demonstrated by all of the Viking Biology Experiments. It is also proposed that the syntheses of these substances result mainly from electrical discharges between wind-mobilized particles at Martian pressures; plasmas are initiated and maintained by these discharges. Active species in the plasma either combine to form or react with inorganic surfaces to create the reactive constitutents.  相似文献   

19.
B C Clark 《Origins of life》1979,9(3):241-249
Microorganisms deep in the Martian soil could derive energy indirectly from the sun via chemical reactions involving atmospheric products of the solar ultraviolet flux. The Viking discovery of a chemically uniform regolith which, though poor in organics, is rich in sulfur-containing compounds suggests reaction sequences in which sulfur is recycled through reduced and oxidized states by biologically catalyzed reactions with photochemically-produced atmospheric constituents. One candidate reaction, reduction of soil ssufate minerals by molecular hydrogen, is already exploited on earth by bacteria of the ubiquitous and tenacious Desulfovibrio genus.  相似文献   

20.
Microorganisms deep in the Martian soil could derive energy indirectly from the sun via chemical reactions involving atmospheric photolysis products of the solar ultraviolet flux. The Viking discovery of a chemically uniform regolith which, though poor in organics, is rich in sulfur-containing compounds suggests reaction sequences in which sulfur is recycled through reduced and oxidized states by biologically catalyzed reactions with photochemically-produced atmospheric constitutents. One candidate reaction, reduction of soil sulfate minerals by molecular hydrogen, is already exploited on earth by bacteria of the ubiquitous and tenaciousDesulfovibrio genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号