首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unusual gene interactions were observed in several doubly transformed tobacco plants which were obtained following sequential transformation steps using two T-DNAs encoding different selection and screening markers. The expression of T-DNA-I, which encoded kanamycin resistance (Kanr) and nopaline synthase (NOS), was suppressed in some, but not all, of the double transformants after the introduction of T-DNA-II, which encoded hygromycin resistance (Hygr) and octopine synthase (OCS). Double transformants in which T-DNA-I had been inactivated could produce KanrNOS+ progeny, but these were shown to lack T-DNA-II, thus establishing the role of this T-DNA in the suppression of T-DNA-I. Reversible cytosine methylation of the promoters of T-DNA-I genes was shown to correlate with their activation/inactivation cycle. In this paper we pursue further the questions of the mechanism of suppression of T-DNA-I genes by T-DNA-II, and also the timing and extent of demethylation of T-DNA-I promoters in Kanr progeny following the loss of T-DNA-II. We propose that the suppression is due to the competition between homologous regions on each T-DNA for binding to nuclear sites with fixed locations. We further suggest that incomplete demethylation patterns of T-DNA-I promoters in Kanr progeny reflect the existence in the shoot apex meristem of two cell populations, which have either methylated or unmethylated T-DNA-I promoters, respectively. Thus, Kanr progeny are epigenetic chimeras with respect to the expression of T-DNA-I genes.  相似文献   

2.
A T-DNA locus comprising nptII, uidA and nos genes — all under the control of the nos promoter (this locus was designated K because it encodes resistance to Kanamycin) - was found to be inherited erratically in a transgenic tobacco line. This anomalous behavior was partially explained following a karyotype analysis of plants representing several generations: these plants were aneuploids, presumably for the K-containing chromosome. During four generations of sexual propagation, transgenic plants that were either trisomic or tetrasomic for the K-containing chromosome (i.e. 2n=49 or 2n=50, respectively) were obtained. The trisomic plants (2n=48+1) were virtually indistinguishable phenotypically from normal euploids (2n=4x=48), whereas the tetrasomic plants (2n=48+2) were smaller, had somewhat misshapen leaves and exhibited reduced fertility. Although the amount of NPTH protein in different trisomic (K--, KK-, KKK) and tetrasomic (KK--, KKK-) plants was generally consistent with a K dosage effect, the genetic behavior of each trisomic — with respect to segregation of KanR and marker gene activity in progeny — was unique and not completely explicable by invoking aneuploidy. Specifically, unexpected gains or losses of K could occur, suggesting the formation of double reductional gametes and/or frequent gene conversion at this locus. The susceptibility of K locus marker genes to trans-inactivation in the trisomic and tetrasomic lines was tested by crossing in partially homologous silencing loci. In all transgenotypes tested, the three K marker genes were sensitive to trans-silencing, which was accompanied by methylation in all copies of the nos promoter. In addition to this directed inactivation/methylation, the K locus could also undergo infrequent, spontaneous partial methylation, which produced stable epialleles. In most plants, however, the multiple copies of the nos promoter at this locus remained unmethylated and active through four generations in all transgenotypes examined. The significance of these results for irregular inheritance patterns, aneuploid syndromes and homology-dependent gene silencing is discussed.  相似文献   

3.
Previously we have demonstrated gene targeting in plants after Agrobacterium-mediated transformation. In these initial experiments a transgenic tobacco line 104 containing a T-DNA insertion with a defective neomycin phosphotransferase (nptII) gene was transformed with a repair construct containing an otherwise defective nptII gene. Homologous recombination between the chromosomally located target and the incoming complementary defective nptII construct generated an intact nptII gene and led to a kanamycin-resistant (Kmr) phenotype. The gene targeting frequency was 1×10–5. In order to compare direct gene transfer and Agrobacterium-mediated transformation with respect to gene targeting we transformed the same transgenic tobacco line 104 via electroporation. A total of 1.35×108 protoplasts were transformed with the repair construct. Out of nearly 221 000 transformed cells 477 Kmr calli were selected. Screening the Kmr calli via PCR for recombination events revealed that in none of these calli gene targeting had occurred. To establish the origin of the high number of Kmr calli in which gene targeting had not occurred we analysed plants regenerated from 24 Kmr calli via PCR and sequence analysis. This revealed that in 21 out of 24 plants analysed the 5-deleted nptII gene was fused to the hygromycin phosphotransferase (hpt) gene that was also present on the repair construct. Sequence analysis of 7 hpt/nptII gene fusions showed that they all contained a continuous open reading frame. The absence of significant homology at the fusion site indicated that fusion occurred via a process of illegitimate recombination. Therefore, illegitimate recombination between an introduced defective gene and another gene present on the repair construct or the chromosome has to be taken into account as a standard byproduct in gene targeting experiments.  相似文献   

4.
Doubly transformed tobacco plants were obtained following sequential transformation steps using two T-DNAs encoding different selection and screening markers: T-DNA-I encoded kanamycin resistance and nopaline synthase; T-DNA-II encoded hygromycin resistance and octopine synthase. A genetic analysis of the inheritance of the selection and screening marker genes in progeny of the doubly tranformed plants revealed that the expression of T-DNA-I genes was often suppressed. This suppression could be correlated with methylation in the promoters of these genes. Surprisingly, both the methylation and inactivation of T-DNA-I genes occurred only in plants containing both T-DNAs: when self-fertilization or backcrossing produced progeny containing only T-DNA-I, expression of the genes on this T-DNA was restored and the corresponding promoters were partially or completely demethylated. These results indicated that the presence of one T-DNA could affect the state of methylation and expression of genes on a second, unlinked T-DNA in the same genome.  相似文献   

5.
Mosaic expression pattern of the nptII gene in transgenic tobacco Nu 21 leaf somatic cells was demonstrated. Inheritance of this phenotype (in T1–T4 and F1 backcrosses) was revealed. Three plant groups were distinguished, with low frequency of variegation manifestation (0–21.8%), with the high frequency of mosaic progeny (63.1 to 100%), and the intermediate type, where the frequency of the appearance of mosaic plants varied in a wide range, from 0 to 100%. The data obtained suggested the existence of two metastable states of a transgene in the leaf disk somatic cells (active and silenced), which could be associated with DNA modification, i.e., methylation of cytosine within the nptII gene sequence.  相似文献   

6.
Summary The hypersensitive response of tobacco to inoculation with tobacco mosaic virus (TMV) is controlled by a single dominant gene, the N gene. As a first step in localizing and transferring the N gene, we have prepared a line of tobacco plants in which the kanamycin-resistance (Kmr) gene is closely linked to the N gene. Nicotiana tabacum plants heterozygous for the N gene were transformed to Kmr by Agrobacterium carrying pMON200. Eighty-nine independent transformed clones were regenerated and were backcrossed with nontransformed, TMV-sensitive plants. Progeny from these crosses were screened first for Kmr; then the Kmr progeny were inoculated with TMV and scored for the hypersensitive response. Of the initial 89 clones, 68 appeared to have integrated a single functional Kmr gene. Initial tests for TMV resistance indicated possible linkage between Kmr and the N gene in 11 plants. With further testing, linkage has been established for two of these plant lines. In one of these lines, the two genes were 30–40 map units apart, and evidence of somatic instability in the linkage was obtained. However, in the second line, linkage between Kmr and the N gene was tight, and recombination between the genes in this case was only 5%. Southern hybridization revealed that this plant contained only a single copy of the Kmr gene. Linkage between Kmr and the N gene in this plant line has been verified in each of two additional backcross generations.Abbreviations nptII Neomycin phosphotransferase gene - Kmr kanamycin resistant - Kms kanamycin sensitive - TMV tobacco mosaic virus - TMV-R TMV resistant - TMV-S TMV sensitive  相似文献   

7.
Differences in the mosaic plants occurence frequency between the Nu5 and Nu6 lines of transgenic tobacco (Nicotiana tabacum) plants remained irrespective of the nptII marker gene allelic state. nptII gene transition from the hemizygous state (T3) to the homozygous one (T4) was accompanied by an increase in the frequency of mosaics in both lines. Transition from the homozygous state (T4) into the hemizygous one (F1) resulted in a further increase in the frequency of mosaic plants in the Nu5 line, whereas this parameter remained at a high level in the Nu6 line. pMAS promoter hypermethylation in plants of both lines, as well as differences in the 5??-part truncated nptII gene copy cytosin methylation level between the Nu5 and Nu6 lines, pointed to nptII gene mosaic expression epigenetic regulation.  相似文献   

8.
We have investigated the stability of the expression of different T-DNA-borne genes in hybrid tobacco lines. These lines were constructed to rescue rolC-induced male sterility in kanamycin-resistant P35s-rolC transgenic tobacco plants by expression of rolC antisense genes. Using five different tester lines, a total of 158 hybrids was obtained. We observed inactivation of transgene expression in 20% of the F1 progeny and in 35% of the backcrossed F2 progeny, as indicated by the loss of kanamycin resistance. In 3% of all crosses complete loss of antibiotic resistance was noted, while in most affected hybrid progeny only part of the population became kanamycin sensitive. Single genes could be selectively inactivated on T-DNAs harboring several genes. Gene inactivation was not restricted to one of the two T-DNAs examined. Somatic silencing, visualized by a cell-specific 35SGUSINT marker gene, occurred in a random fashion or exhibited an inherited specific pattern. The type of somatic silencing pattern observed indicated developmental control of the process. Two phenotypic classes could be distinguished with respect to frequency and timing of the inactivation process. Rapid gene inactivation, occurring within a few weeks after germination of hybrid seedlings, was characterized by complete methylation of restriction sites in the promoter of the silenced gene, resetting of gene expression during meiosis, heridity of the developmentally controlled program of gene silencing in subsequent generations, and rapid reactivation of gene expression after genetic separation of the different T-DNAs. In contrast, a slow type of gene inactivation was of a more stochastic nature and was recognized only in hybrids of the backcrossed F2 generation. In this case the degree of promoter methylation, which could extend beyond the T-DNA borders, was not correlated with the reduction in steady-state poly(A)+ mRNA levels, the silenced state was transmitted through meiosis and reactivation lasted several generations. The implications of the observations for our understanding of the gene inactivation process are discussed.  相似文献   

9.
This work is focused on the generation of selectable marker-free transgenic tobacco plants using the self excision Cre/loxP system that is controlled by a strong seed specific Arabidopsis cruciferin C (CRUC) promoter. It involves Agrobacterium-mediated transformation using a binary vector containing the gus reporter gene and one pair of the loxP sites flanking the cre recombinase and selectable nptII marker genes (floxed DNA). Surprisingly, an ectopic activation of CRUC resulting in partial excision of floxed DNA was observed during regeneration of transformed cells already in calli. The regenerated T0 plants were chimeric, but no ongoing ectopic expression was observed in these one-year-long invitro maintained plants. The process of the nptII removal was expected in the seeds; however, none of the analysed T0 transgenic lines generated whole progeny sensitive to kanamycin. Detailed analyses of progeny of selected T0-30 line showed that 10.2% GUS positive plants had completely removed nptII gene while the remaining 86.4% were still chimeras. Repeated activation of the cre gene in T2 seeds resulted in increased rate of marker-free plants, whereas four out of ten analysed chimeric T1 plants generated completely marker-free progenies. This work points out the feasibility as well as limits of the CRUC promoter in the Cre/loxP strategy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Promoter methylation and progressive transgene inactivation inArabidopsis   总被引:1,自引:0,他引:1  
Agrobacterium-transformedArabidopsis plants were generated and the stability of their T-DNA-encoded resistance to kanamycin was examined. Of seven families, each homozygous for a single insertion event, two showed progressive inactivation of resistance over four generations of inbreeding. Loss of resistance was associated with methylation of anSst II site in thenos promoter of the kanamycin resistance gene. Treatment of plant roots from inactive lines with the demethylating agent 5-azacytidine restored the ability of such lines to form callus on kanamycin-containing media. These observations are consistent with the view that methylation is a factor in the progressive inactivation of transgenes inArabidopsis.  相似文献   

11.
Tomato (Lycopersicon esculentum Mill.) plants homozygous for the mutant pro gene, exhibiting the distinctive procera phenotype, appeared virtually identical to gibberellic acid (GA3)-treated isogenic normal plants. The pro gene and GA3 caused analogous increases in internode length, and in the length and number of cells in the outer cell layers of each internode. Internode number was also increased by pro and GA3 over the period of the experiment. Despite their greater length, the internodes of GA3-treated and pro plants reached their final size within a time period similar to that of internodes of untreated normal plants. The pro mutant itself was responsive to GA3, especially in the seedling stage, but the proportional increase in height seen in the later stages of growth was less than that of normal plants.Abbreviations GA gibberellin - GA3 gibberellic acid - LSD least significant difference  相似文献   

12.
13.
Summary We transformed tomato (Lycopersicon esculentum L.) by using Agrobacterium rhizogenes containing two independent plasmids: the wild-type Ri-plasmid, and the vector plasmid, pARC8. The T-DNA of the vector plasmid contained a marker gene (Nos/Kan) encoding neomycin phosphotransferase which conferred resistance to kanamycin in transformed plant cells. Transgenic plants (R 0) with normal phenotype were regenerated from transformed organogenic calli by the punctured cotyledon transformation method. Southern blot analysis of the DNA from these transgenic plants showed that one or two copies of the vector plasmid T-DNA, but none of the Ri-plamid T-DNA, were integrated into the plant genome. Different transgenic plants derived from the same callus clone showed an identical DNA banding pattern, indicating the non-chimeric origin of these plants. We also transformed tomato by using A. tumefaciens strain LBA4404 containing a disarmed Ti-plasmid (pAL4404), and a vector plasmid (pARC8). Transgenic plants derived via A. tumefaciens transformation, like those via A. rhizogenes, contained one to two copies of the integrated vector T-DNA. The kanamycin resistance trait in the progeny (R 1) of most transgenic plants segregated at a ratio of 3:1, suggesting that the vector T-DNAs were integrated at a single site on a tomato chromosome. In some cases, the expression of the marker gene (Nos/Kan) seemed to be suppressed or lost in the progeny.  相似文献   

14.
15.
A silicon carbide whisker-mediated gene transfer system with recovery of fertile and stable transformants was developed for cotton (Gossypium hirsutum L.) cv. Coker-312. Two-month-old hypocotyl-derived embryogenic/non-embryogenic calli at different days after subculture were treated with silicon carbide whiskers for 2 min in order to deliver pGreen0029 encoding GUS gene and pRG229 AVP1 gene, encoding Arabidopsis vacuolar pyrophosphatase, having neomycin phosphotransferaseII (nptII) genes as plant-selectable markers. Three crucial transformation parameters, i.e., callus type, days after subculture and selection marker concentration for transformation of cotton calli were evaluated for optimum efficiency of cotton embryogenic callus transformation giving upto 94% transformation efficiency. Within six weeks, emergence of kanamycin-resistant (kmr) callus colonies was noted on selection medium. GUS and Southern blot analysis showed expression of intact and multiple transgene copies in the transformed tissues. Kanamycin wiping of leaves from T1, T2, and T3 progeny plants revealed that transgenes were inherited in a Mendelian fashion. Salt treatment of T1 AVP1 transgenic cotton plants showed significant enhancement in salt tolerance as compared to control plants. Thus far, this is first viable physical procedure after particle bombardment available for cotton that successfully can be used to generate fertile cotton transformants.  相似文献   

16.
Directed excision of a transgene from the plant genome   总被引:40,自引:0,他引:40  
Summary The effectiveness of loxP-Cre directed excision of a transgene was examined using phenotypic and molecular analyses. Two methods of combining the elements of this system, re-transformation and cross pollination, were found to produce different degrees of excision in the resulting plants. Two linked traits, -glucuronidase (GUS) and a gene encoding sulfonylurea-resistant acetolactate synthase (ALSr), were integrated into the genome of tobacco and Arabidopsis. The ALSr gene, bounded by loxP sites, was used as the selectable marker for transformation. The directed loss of the ALST gene through Cre-mediated excision was demonstrated by the loss of resistance to sulfonylurea herbicides and by Southern blot analysis. The -glucuronidase gene remained active. The excision efficiency varied in F1 progeny of different lox and Cre parents and was correlated with the Cre parent. Many of the lox × Cre F1 progeny were chimeric and some F2 progeny retained resistance to sulfonylureas. Re-transformation of lox/ALS/lox/GUS tobacco plants with cre led to much higher efficiency of excision. Lines of tobacco transformants carrying the GUS gene but producing only sulfonylurea-sensitive progeny were obtained using both approaches for introducing cre. Similarly, Arabidopsis lines with GUS activity but no sulfonylurea resistance were generated using cross pollinations.  相似文献   

17.
In a collection of 111 transgenic Arabidopsis thaliana lines, silencing of the nptII gene was observed in 62 (56%) of the lines and three distinct nptII-silencing phenotypes were identified. Two T-DNA constructs were used, which differed in distance and orientation of the marker gene relative to the border sequences. Comparison of the sets of lines generated with each vector, indicate that the T-DNA construct configuration influence the incidence of lines displaying silencing, as well as the distribution of silencing phenotypes. Twenty lines were investigated more thoroughly. The frequency of silencing varied between siblings in 19 lines, including three lines containing a single T-DNA copy. The last line showed 100% silencing. The gus gene present in both constructs could be expressed in the presence of a silenced nptII gene. Investigation of methylation at a single site in the pnos promoter revealed partial methylation in multi-copy lines, but no methylation in single-copy lines. For 16 lines, the overall frequencies of silencing differed significantly between control plants and plants exposed to temperature stress; in 11 of these lines at the 0.1% level. In several cases, the frequency of silencing in progeny of stress-treated plants was higher than for the control group, while other lines showed higher frequencies of kanamycin-resistant progeny for the stress-treated sibling plants.  相似文献   

18.
As in other higher eukaryotes, DNA methylation in plants is predominantly found at deoxycytosine residues, while deoxyadenosine residues are not methylated at significant levels. 6mdA methylation has been successfully introduced into yeast and Drosophila via expression of a heterologous methyltransferase, but similar attempts in tobacco had, up until now, proved unsuccessful despite the correct expression of a methyltransferase construct. It was unclear whether this result reflected the failure of heterologous methyltransferases to enter the nucleus, or whether 6mdA methylation, which has been shown to interfere with promoter activity, was toxic for plants. Here we show that 6mdA methylation can be successfully introduced into transgenic tobacco plants via expression of the bacterial dam enzyme. The efficiency of 6mdA methylation was directly proportional to expression levels of the dam construct, and methylation of all GATC sites was observed in a highly expressing line. Increasing expression levels of the enzyme in different plants correlated with increasingly abnormal phenotypes affecting leaf pigmentation, apical dominance, and leaf and floral structure. Whilst introduction of dam -specific methylation does not cause any developmental abnormalities in yeast or Drosophila , our data suggest that methylation of deoxyadenine residues in plants interferes with the expression of genes involved in leaf and floral development.  相似文献   

19.
DNA transfer was demonstrated from six species of donor plants to the soil bacterium, Acinetobacter spp. BD413, using neomycin phosphotransferase (nptII) as a marker for homologous recombination. These laboratory results are compatible with, but do not prove, DNA transfer in nature. In tobacco carrying a plastid insertion of nptII, transfer was detected with 0.1 g of disrupted leaves and in oilseed rape carrying a nuclear insertion with a similar quantity of roots. Transfer from disrupted leaves occurred in sterile soil and water, without the addition of nutrients. It was detected using intact tobacco leaves and intact tobacco and Arabidopsis plants in vitro. Transfer was dose-dependent and sensitive to DNase, and mutations in the plant nptII were recovered in receptor bacteria. DNA transfer using intact roots and plants in vitro was easily demonstrated, but with greater variability. Transfer varied with plant genome size and the number of repeats of the marker DNA in the donor plant. Transfer was not detected in the absence of a homologous nptII in the receptor bacteria. We discuss these results with reference to non-coding DNA in plant genomes (e.g., introns, transposons and junk DNA) and the possibility that DNA transfer could occur in nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号