首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Expression systems of human and silkworm lysozymes were constructed using the methylotrophic yeast Pichia pastoris as a host. The leader sequence and its prepro peptide of alpha-factor (a peptide pheromone derived from yeast) and the native signal sequences of these lysozymes, were used as secretion signals. When the alpha-factor leader is used as the signal sequence, human lysozyme is secreted at a much higher level than is silkworm lysozyme. On the other hand, silkworm lysozyme, when its native signal is used, is secreted more efficiently than human lysozyme. Therefore, we expected that human lysozyme cDNA with a silkworm native signal would be secreted more efficiently than human lysozyme with its native signal. However, its level of expression was not increased. This result indicates that the native signal of silkworm lysozyme does not promote the secretion of the lysozyme, but rather alpha-factor leader inhibits the secretion. Silkworm lysozyme with the alpha-factor leader is so unstable that it could be easily attacked by some proteases and our findings suggest that the level of expression of heterologous protein with signal peptides and its stability are greatly affected by the selection of the appropriate secretion signal sequence.  相似文献   

2.
Given that signal sequences between secreted proteins of different species can be interchanged, it is reasonable to expect that both mammalian and yeast signal sequence trapping (SST) systems would secrete Haemonchus contortus proteins with similar efficiency and quality. To determine if H. contortus cDNAs that contain a signal sequence could re-establish secretion of a reporter protein, mammalian and yeast SST vectors were designed, 10 H. contortus genes selected, and their respective cDNAs cloned into these two SST vectors. The selected molecules included genes known to code for excretory/secretory or membrane-bound proteins as potential test 'positives', and genes known to code for non-secreted proteins as test 'negatives'. While differentiation between secretion and non-secretion was evident in both systems, the results indicated greater efficiency was achieved when the mammalian system was used. Therefore, mammalian SST using COS cells would be a more useful tool to screen H. contortus cDNA libraries for potential secreted and type-1 integral membrane proteins than yeast SST.  相似文献   

3.
We investigated the nature of signal recognition, transport, and secretion of mutant hemagglutinins (HAs) of a human influenza virus by the yeast Saccharomyces cerevisiae. The cDNA sequences encoding variant forms of influenza HA were expressed in S. cerevisiae. The HA polypeptides (HA500 and HA325) that were synthesized with their N-terminal signal peptides were correctly targeted to the membrane compartment where they were glycosylated. In contrast, the HA polypeptides (HA484 and HA308) lacking the signal peptide were expressed in the cytoplasm and did not undergo any glycosidic modification, demonstrating the importance of the heterologous signal sequence in the early steps of translocation in S. cerevisiae. The analysis of the N-terminal amino acid sequence of HA500 and HA325 polypeptides demonstrated the correct cleavage of the signal peptide, indicating the structural compatibility of a heterologous signal peptide for efficient recognition and processing by the yeast translocation machinery. The membrane-sequestered and glycosylated HA polypeptides were relatively stable in S. cerevisiae compared with the signal-minus, nonglycosylated HA molecules. Although both the anchor-minus HA (HA500) and HA1 (HA325) polypeptides were targeted efficiently to the membrane, their glycosylation and transport patterns were shown to be different. During pulse-chase, the HA500 remained cell-associated with no detectable secretion into the extracellular medium, whereas the HA325 secreted into the medium. Furthermore, only the cell-associated and secreted forms of HA325 and not HA500 appeared to have undergone hyperglycosylation with the extensive addition of high-molecular-weight outer-chain mannans. Possible reasons for the observed phenotypic behavior of these two mutant HAs are discussed.  相似文献   

4.
A cDNA clone of the lipase secreted by Kurtzmanomyces sp. I-11 was isolated from a cDNA library of this yeast by PCR screening using oligonucleotide primers designed on the basis of the partial amino acid sequence of the lipase. The cloned cDNA (lip1) encoded a hydrophobic protein of 484 amino acids, where the first 20 amino acids and the following 6 amino acid sequences were predicted to be the signal sequence for secretion and a pro-sequence, respectively. The deduced amino acid sequence of the Kurtzmanomyces lipase was most similar to Candida antarctica DSM 3855 lipase A (74% identity) and weakly to other lipases. The consensus pentapeptide (-Gly-X-Ser-X-Gly-) that forms a part of the interfacial lipid recognition site in lipases was conserved. A high level of lipase was produced by Pichia pastoris transformed with the lip1 cDNA, indicating that the cloned cDNA indeed encodes a lipase.  相似文献   

5.
T Sato  S Tsunasawa  Y Nakamura  M Emi  F Sakiyama  K Matsubara 《Gene》1986,50(1-3):247-257
Recombinant plasmids were constructed in which the human salivary alpha-amylase gene, with or without the N-terminal signal sequence for secretion, was placed under control of the APase (PHO5) promoter of Saccharomyces cerevisiae. In yeast cells transformed with the alpha-amylase gene having the human signal sequence for secretion, the gene was expressed and the enzyme was secreted into the medium in three different glycosylated forms. The amylase gene without the signal sequence was also expressed in yeast, but the products were neither secreted nor glycosylated. Determination of the N-terminal amino acid (aa) sequence revealed that the 15-aa signal sequence had been cleaved from the secreted enzyme, and that the N-terminal residue, glutamine, had been modified into pyroglutamate, as is commonly observed with the mammalian salivary alpha-amylase. Thus, the human salivary alpha-amylase signal sequence for secretion was correctly recognized and processed by the yeast secretory pathway. The C-terminal residue was identified as leucine, which is predicted from the nucleotide sequence data to be located at position 511 in front of the termination codon. Therefore, there is no post-translational processing in formation of the C terminus.  相似文献   

6.
P G Zaworski  K R Marotti  V MacKay  C Yip  G S Gill 《Gene》1989,85(2):545-551
The properties of porcine urokinase plasminogen activator (u-PA), produced and secreted by Saccharomyces cerevisiae, were studied to evaluate processing of the enzyme by yeast. Porcine u-PA cDNA was positioned behind the triosephosphate isomerase promoter and the yeast alpha-mating factor secretion signal sequences in a yeast expression vector, pZV125. Greater than 99% of the secreted PA activity was found to be single chain (pro-urokinase). The secreted gene product could be converted to two-chain (tc) with plasmin and then purified to homogeneity on benzamidine sepharose. Plasmin cleavage resulted in the formation of high Mr (HMW) and low Mr moieties representing HMW tc and free catalytic domain, respectively, as detected by N-terminal amino acid sequence analysis. Approximately 60-70% of the secreted activity was found to be associated with hyperglycosylated fractions from G-75 sizing columns. Approximately 30% of the total activity was secreted into the culture medium, where levels of activity approached 200 I.U./ml.  相似文献   

7.
The secretion of N-linked glycosylated alpha-lactalbumin was much higher in the expression system of yeast Pichia pastoris carrying goat alpha-lactalbumin cDNA than in mammalian milk. This is possibly because of the presence of N-linked glycosylation signal sequences, Asn(45)-Asp(46)-Ser(47) and Asn(74)-Ile(75)-Ser(76), in wild-type alpha-lactalbumin. Attempts to elucidate the mechanism of the higher secretion of glycosylated alpha-lactalbumin in P. pastoris were made. Mutant N45D that deleted the N-linked glycosylation signal sequence at position 45 predominantly secreted nonglycosylated protein. On the other hand, mutant D46N with another N-glycosylation signal site at position 46 only secreted N-linked glycosylated alpha-lactalbumin, i.e. not the nonglycosylated protein. The total secreted amount of mutant N45D was greatly enhanced, while the secreted amounts of the wild-type and mutant D46N were very low, suggesting that the increase in the number of glycosylation sites greatly reduced the secretion of alpha-lactalbumin. It seems likely that the glycosylated alpha-lactalbumin may be degraded by the quality control system.  相似文献   

8.
To get high level secretion of human lysozyme in Pichia pastoris, the following three signal sequences and one prepro sequence were evaluated: chicken lysozyme signal peptide, leucine-rich artificial signal peptide, Saccharomyces invertase signal peptide, and Saccharomyces prepro sequence of alpha factor (MF-alpha Prepro). Transformants harboring a lysozyme gene with MF-alpha Prepro secreted 20-fold more lysozyme than those harboring the lysozyme gene with any one of the other three signal sequences. Three mutant leader sequences derived from MF-alpha Prepro were constructed to discover the function of the pro region. The secretion was dramatically decreased by eliminating the pro region of MF-alpha Prepro. In contrast, MF-alpha Prepro with the EAEAEA sequence directed the secretion of an equivalent level of lysozyme having the extra amino acids (EAEAEA) in its N-terminus. For the effective secretion of native human lysozyme, MF-alpha Prepro without any spacer sequences was most suitable. The secreted protein by MF-alpha Prepro construct was identical with the authentic human lysozyme, judging from N-terminal amino acid sequencing and molecular mass spectrometric and crystallographic analysis.  相似文献   

9.
The function of amino-terminal pro-specific peptides (propeptides), sequences often found on intermediate precursor forms of secreted proteins, is poorly understood. Human preproparathyroid hormone (prepro-PTH), a precursor protein containing such a propeptide, is initially synthesized as a precursor containing a 25-amino acid signal sequence, a 6-amino acid propeptide, and the 84-amino acid mature secreted peptide. Cloned cDNA encoding prepro-PTH and synthetic oligonucleotides were used to generate a mutant missing precisely the pro-specific sequences. The effects of this deletion on signal sequence function and on secretion per se were assessed after expression of the mutant cDNA in intact cells and in a cell-free translation system using synthetic mRNA in the presence of microsomal membranes. The mutant precursor protein was inefficiently translocated and cleaved, and cleavage occurred both at the normal site and within the signal sequence. Thus, for the eukaryotic protein prepro-PTH, sequences immediately downstream and separate from the classically defined signal sequence facilitate accurate and efficient signal function.  相似文献   

10.
Membrane associated and secreted proteins are translated as precursors containing a signal peptide that allows protein-insertion into the membrane of the endoplasmic reticulum and is co-translationally removed in the lumen. The ability of the signal peptide to direct a polypeptide into the secretory pathway is exploited in methods developed to select cDNAs encoding such proteins. Different strategies are known in which cDNA libraries can be screened for signal peptides by the ability of the latter to rescue the translocation of signal sequence-less proteins. In one method, a cDNA library is tested for interleukin 2 receptor α chain translocation to the membrane in COS cells, in another one for invertase secretion from yeast. In this work, we compared the two systems by testing six mouse signal peptides in COS and yeast cells. All of them were functional in the mammalian system, whereas only three of them in yeast. Two other sequences needed the 5′ cDNA sequence flanking the ATG codon to be removed in order to enable protein translocation. Although the structure of signal sequences and the functioning of the secretory machinery are well conserved from prokaryotes to eukaryotes, it seems evident that not all signal peptides can be interchanged between different proteins and organisms. In particular, signal peptides that are functional in the mammalian system do not necessarily lead to protein translocation in yeast. Received: 9 March 2001  相似文献   

11.
This paper describes a novel method for creating exact DNA fusions between any two points in a plasmid carried in Bacillus subtilis. It exploits the homologous in vivo recombination between directly repeated sequences that can be established by insertion of a synthetic oligodeoxyribonucleotide. The method was used to enhance the productivity in B. subtilis of a cloned alpha-amylase (Amy)-encoding gene originating from Bacillus stearothermophilus. Thus, an exact fusion between nucleotide sequences encoding the expression signals, including the signal peptide, of a Bacillus licheniformis Amy-encoding gene and the mature Amy of B. stearothermophilus, was created. The resulting hybrid translational product was processed correctly in B. subtilis during secretion, giving rise to an Amy identical to the mature Amy secreted by B. stearothermophilus.  相似文献   

12.
Expression plasmids have been constructed for evaluation of different signal sequences for secretion and correct amino terminal processing of foreign proteins expressed in Escherichia coli. cDNA representing the N-terminal region (1-37) of human parathyroid hormone was inserted between DNA coding for two different forms of the signal sequence and two IgG binding domains (ZZ) derived from Staphylococcal protein A. The expression products were secreted to the periplasm and even to the growth medium and were easily purified by affinity chromatography using the ZZ part as a specific handle. Further analyses showed that the expression products were correctly processed to the mature protein hPTH(1-37)ZZ in a construct where the wild type signal sequence of Staphylococcus protein A was used. When a mutated signal sequence which lacks the normal cleavage site was employed, the fusion protein was not cleaved. Since signal sequences seem to be processed in the correct way in this system, we conclude that the general design of this type of expression vector is well suited for studying the N-terminal processing and secretion of heterologous proteins in E. coli.  相似文献   

13.
Secretion of a recombinant protein from the yeast Pichia pastoris requires the presence of a signal peptide at the amino terminus. Maintaining the full amino acid sequence of the signal peptide is thought to be important for proper signal processing and protein secretion. We show that at least for one protein, a synthetic human interferon, the presence of a Gateway recombination site within the signal peptide is fully compatible with high levels of protein secretion. The amino termini of the secreted interferon proteins cloned with Gateway and cloned with restriction enzymes and ligase are identical, and the proteins were highly active in biological assays. Compatibility with Gateway cloning simplifies construction of plasmids directing secretion of recombinant proteins from P. pastoris.  相似文献   

14.
采用RT-PCR及RACE法,克隆得到鳜鱼(Siniperca chuatsi)肝胰脏胰蛋白酶(trypsin, Try)、淀粉酶(amylase, Amy)基因 cDNA全序列.结果表明,鳜鱼Try基因cDNA全长为896 bp,其中开放阅读框 (open reading frame,ORF)为744 bp,编码247个氨基酸. 序列同源性分析发现,鳜鱼Try与 斑马鱼(Danio rerio)、非洲爪蟾(Xenopus laevis)、 小鼠Try和人TRY氨基酸序列同源性分别为81.4%、75.3%、74.5%和71.4%.鳜鱼Amy 基因cDNA全长为1 647 bp,其中ORF为1 539 bp,编码512个氨基酸.鳜鱼Amy与斑马鱼 、非洲爪蟾、小鼠Amy和人AMY氨基酸序列同源性分别为79.7%、75.4%、71.9%和70.9%. 同时对鳜鱼基因组进行PCR,获得鳜鱼Try、Amy与胃蛋白酶原(pepsinogen, Pep)全基因组DNA序列.序列分析表明,鳜鱼Try基因由4个内含子和5个外显子组成,全长1 362 bp;鳜鱼Amy基因由8个内含子和9个外显子组成,全长4 267 bp;鳜鱼Pep基因由8个内含子和9个外显子组成,全长 4 032 bp,与其它脊椎动物基因结构相似.应用Genome walker方法在鳜鱼克隆得到长度分别为1 189 bp、413 bp和527 bp的Try、Amy和Pep基因的5′侧翼区序列以及1段长为704 bp的Pep 基因3′侧翼区序列,并利用相关软件预测其中具有多个可调节其表达的调控元件.鳜鱼Try、Am y和Pep基因组全序列的克隆及其序列、结构分析和分子系统进化等的研究,为鱼类消化代谢相关基因的生理功能及表达调控机理进一步研究提供依据.  相似文献   

15.
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289-296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.  相似文献   

16.
K J Hofmann  L D Schultz 《Gene》1991,101(1):105-111
The Saccharomyces carlsbergensis MEL1 gene encodes alpha-galactosidase (melibiase; MEL1) which is readily secreted by yeast cells into the culture medium. To evaluate the utility of the MEL1 signal peptide (sp) for the secretion of heterologous proteins by Saccharomyces cerevisiae, an expression vector was constructed which contains the MEL1 promoter and MEL1 sp coding sequence (MEL1sp). The coding sequences for echistatin (Echis) and human plasminogen activator inhibitor type 1 (PAI-1) were inserted in-frame with the MEL1sp. S. cerevisiae transformants containing the resulting expression vectors secreted negligible amounts of either Echis or PAI-1. Using site-directed mutagenesis, several mutations were introduced into the MEL1sp. Two mutations were identified which dramatically increased the secretion of both Echis and PAI-1 to levels similar to those achieved when using the yeast MF alpha 1 pre-pro secretory leader. In particular, increasing the hydrophobicity of the core region plus the addition of a positive charge to the N-terminal domain of the MEL1 sp resulted in the greatest increase in the secretion levels of those two proteins.  相似文献   

17.
G P Livi  A A Ferrara  R Roskin  P L Simon  P R Young 《Gene》1990,88(2):297-301
We have expressed fragments of the cDNA coding for mature human interleukin-1 alpha (hIL-1 alpha) in Saccharomyces cerevisiae. Mature hIL-1 alpha contains one potential N-linked glycosylation site that is not recognized in mammalian cells. Translational fusions to either one of three yeast signal sequences resulted in secretion of bioactive, N-glycosylated hIL-1 alpha. The extent of glycosylation was significantly reduced using the alpha-factor signal sequence, which itself contains three N-linked glycosylation sites known to be core glycosylated. N-glycosylation has no effect on biological specific activity.  相似文献   

18.
Recombinant human α1-antitrypsin (rAAT) was expressed and secreted from transgenic rice cell suspension cultures in its biologically active form. This was accomplished by transforming rice callus tissues with an expression vector, p3D-AAT, containing the cDNA for mature human AAT protein. Regulated expression and secretion of rAAT from this vector was achieved using the promoter, signal peptide, and terminator from a rice α-amylase gene Amy3D. The Amy3D gene of rice is tightly controlled by simple sugars such as sucrose. It was possible, therefore, to induce the expression of the rAAT by removing sucrose from the cultured media or by allowing the rice suspension cells to deplete sucrose catabolically. Although transgenic rice cell produced a heterogeneous population of the rAAT molecules, they had the same N-terminal amino acids as those found in serum-derived (native) AAT from humans. This result indicates that the rice signal peptidase recognizes and cleaves the novel sequence between the Amy3D signal peptide and the first amino acid of the mature human AAT. The highest molecular weight band seen on Western blots (AAT top band) was found to have the correct C-terminal amino acid sequence and normal elastase binding activity. Staining with biotin-concanavalin A and avidin horseradish peroxidase confirmed the glycosylation of the rAAT, albeit to a lesser extent than that observed with native AAT. The rAAT, purified by immunoaffinity chromatography, had the same association rate constant for porcine pancreatic elastase as the native AAT. Thermostability studies revealed that the rAAT and native AAT decayed at the same rate, suggesting that the rAAT is correctly folded. The productivity of rice suspension cells expressing rAAT was 4.6–5.7 mg/g dry cell. Taken together, these results support the use of rice cell culture as a promising new expression system for production of biologically active recombinant proteins. Received: 18 January 1999 / Received revision: 26 April 1999 / Accepted: 1 May 1999  相似文献   

19.
Farrell PJ  Behie LA  Iatrou K 《Proteins》2000,41(1):144-153
Production of recombinant proteins that are not secreted outside the producing cells usually requires purification steps that can result in significant yield reductions and loss of biological activity. Using insect cells as a model system to devise the means for secreting recombinant proteins that are not normally destined for secretion outside the producing cells, we initially examined the ability of an insect-specific signal peptide sequence to direct secretion of two intracellular proteins (the cytoplasmic enzyme chloramphenicol acetyl transferase [CAT] and the nuclear protein Bombyx mori chorion factor 1 [BmCF1]) expressed in transfected silkmoth cells. Although this signal sequence functioned efficiently as a chimera with normally secreted proteins, it failed to secrete CAT and BmCF1, suggesting that additional signals are required for passage of these polypeptides through the secretion pathway. For this reason, we also generated a secretion module consisting of the secreted protein juvenile hormone esterase (JHE), a spacer region containing a histidine tag and an endopeptidase cleavage site, to which coding sequences of choice can be cloned as C-terminal extensions. In C-terminal fusions with the CAT and BmCF1 open reading frames, the N-terminal JHE moiety was able to provide all the signals necessary for secretion of CAT and BmCF1 into the extracellular environment. The histidine tag present in the spacer region allowed purification of fusion proteins by metal affinity chromatography under nondenaturing conditions, and the enteropeptidase cleavage site was recognized and cleaved by the cognate protease causing the release of the intracellular proteins from the secretion module. We also show that another secreted protein, human granulocyte-macrophage colony stimulating factor (GM-CSF) can substitute for JHE in the secretion module and that these secretion modules can function in mammalian cells.  相似文献   

20.
S J Stahl  L Christiansen 《Gene》1988,71(1):147-156
This paper describes a method for the positive selection of signal sequence mutations that result in enhanced production of secreted human proinsulin by Escherichia coli. Coding sequences for the structural portion of beta-lactamase (EC 3.5.2.6) were substituted for those of the C terminus of proinsulin in a plasmid that normally directs the synthesis and secretion of proinsulin. The resulting plasmid directed the synthesis of a proinsulin/beta-lactamase fusion protein that was secreted into the periplasmic space and conferred resistance to low levels of ampicillin (Ap). Beneficial changes to the signal sequence were selected by the host's ability to grow on high levels of Ap. The beta-lactamase coding sequences were then replaced with those of human proinsulin, resulting in plasmids which directed enhanced production of secreted proinsulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号