首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
A method was recently developed for the specific amplification of human DNA sequences from interspecific somatic cell hybrids by the polymerase chain reaction (PCR) using primers directed to Alu, a short interspersed repeat element (SINE). We now show human-specific amplification using a primer to the 3' end of the human long interspersed repeat element L1Hs (LINE). A monochromosomal hybrid containing an intact human X chromosome yielded approximately 25 discrete products, ranging in size from 800 to 4500 bp. Combination of a single Alu primer and the L1Hs primer yielded a large number of smaller products (300-1000 bp) distinct from those observed with either primer alone. Inspection of ethidium bromide-stained gels showed one Alu-Alu and three Alu-L1Hs products which were present in an intact X chromosome but absent in a hybrid containing an X chromosome deleted for the single metaphase band q28. These four fragments were isolated from the gel and used as probes on Southern blots which confirmed their localization to Xq28. These results demonstrate that primers can be constructed to a variety of interspersed repetitive sequences (IRS) and used individually or in combination for the rapid isolation of DNA fragments from defined chromosomal regions by IRS-PCR.  相似文献   

2.
Interspecific somatic cell hybrids containing single human chromosomes are valuable reagents for localization of cloned genes and DNA fragments to specific chromosomes, for the development of chromosome-specific libraries, and for generation of hybrid cell lines containing subchromosomal regions. A CHO somatic cell hybrid containing a single, intact human chromosome 14 (MHR14) was developed and confirmed by LINE PCR amplification gel pattern, by Alu-517 PCR product dot blot hybridization, and by cytogenetic analysis. MHR14 will serve as the chromosome source for the development of a radiation map of human chromosome 14.  相似文献   

3.
Summary Specific amplification of human sequences of up to several kb length has recently been accomplished in man-hamster and man-mouse somatic hybrid cell DNA by IRS-PCR (interspersed repetitive sequence — polymerase chain reaction). This approach is based on oligonucleotide primers that anneal specifically to human Alu- or L1-sequences and allows the amplification of any human sequences located between adequately spaced, inverted Alu- or L1-blocks. Here, we demonstrate that probe pools generated from two somatic hybrid cell lines by Alu- and L1-PCR can be used for chromosome painting in normal human lymphocyte metaphase spreads by chromosomal in situ suppression (CISS-) hybridization. The painted chromosomes and chromosome subregions directly represent the content of normal and deleted human chromosomes in the two somatic hybrid cell lines. The combination of IRS-PCR and CISS-hybridization will facilitate and improve the cytogenetic analysis of somatic hybrid cell panels, in particular, in cases where structurally aberrant human chromosomes or human chromosome segments involved in interspecies translocations cannot be unequivocally identified by classical banding techniques. Moreover, this new approach will help to generate probe pools for the specific delineation of human chromosome subregions for use in cytogenetic diagnostics and research without the necessity of cloning.  相似文献   

4.
M S Sidhu  B K Helen  R S Athwal 《Genomics》1992,14(3):728-732
We describe here a method for DNA fingerprinting of human chromosomes by Alu-polymerase chain reaction (PCR) amplification of DNA from monochromosomal hybrids, following digestion with restriction endonucleases. DNA digestion with restriction enzymes prior to PCR amplification reduces the total number of amplified fragments. The number and pattern of bands of PCR products observed in an electrophoretic medium are chromosome specific and provide a "fingerprint signature" for individual human chromosomes. Using this approach, we have produced fingerprints for human chromosomes 2, 5, 7, 9, and 12. The applicability of this approach to chromosome identification was assessed by comparing the fingerprints obtained for two different hybrids containing chromosome 7. DNA fragments specific for the long and the short arms of human chromosome 12 have also been identified. In addition, Alu-PCR-generated DNA fragments, specific for different chromosomes, were used to probe Southern blots of a hybrid cell panel to identify human chromosomes present in hybrid cell lines. The chromosomal specificity of these probes permits the identification of intact as well as rearranged chromosomes composed of segments arising from more than one chromosome.  相似文献   

5.
M C Simmler  R D Cox  P Avner 《Genomics》1991,10(3):770-778
A strategy for the rapid isolation of DNA probes from radiation-fusion Chinese hamster cell hybrids containing overlapping portions of the murine X chromosome based on the interspersed repetitive sequence polymerase chain reaction (IRS-PCR) previously used with human somatic cell hybrids has been developed. This specific amplification of mouse DNA on a hamster background depends on the use of primers directed to the B2 short interspersed repeat element family and the R repeat, from the long interspersed repeat element family, L1. Two sets of amplification conditions, which gave specific amplification of mouse DNA from either a mouse X-monochromosomal hybrid or irradiation-fusion hybrids having reduced X content, were defined. The mouse X-only chromosome hybrid yielded approximately 20 discrete reproducible bands, while the irradiation-fusion hybrids yielded between 1 and 10 discrete products. Comparison of different irradiation-fusion hybrids has allowed the definition of both specific and shared products corresponding to different regions within the overlapping X-chromosome fragments present within these hybrids. Use of such hybrids and the IRS-PCR technique has allowed the isolation of probes corresponding to the central region of the mouse X chromosome that contains the X-inactivation center. The method should be widely applicable to the isolation of mouse DNA sequences from mouse hybrid cell lines on either human or Chinese hamster backgrounds.  相似文献   

6.
The Alu-polymerase chain reaction (Alu-PCR) was applied to selectively amplify DNA sequences from human chromosome 6 using a single primer (A1) directed to the human Alu consensus sequence. A specific amplification pattern was demonstrated for a panel of eight somatic cell hybrids containing different portions of chromosome 6. This PCR pattern permits the identification of submicroscopic DNA alterations and can be utilized as a reference for additional chromosome 6-specific hybrids. To obtain new chromosome 6-specific markers we established two libraries from PCR-amplified sequences using two somatic cell hybrids (MCH381.2D and 640-5A). Out of a total of 109 clones that were found to be chromosome 6 specific, 13 clones were regionally assigned. We also included a procedure that allows the isolation of chromosome 6-specific markers from hybrids that contain human chromosomes other than 6. Our results will contribute to the molecular characterization of chromosome 6 by fostering characterization of somatic cell hybrids and by the generation of new regionally assigned DNA markers.  相似文献   

7.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

8.
The ubiquitous nature of the Alu sequence throughout the human genome forms the basis of an assay we present here for analyzing the human chromosome content of human x rodent somatic cell hybrids. A human-specific Alu primer was used both to amplify sequences and to 32P label the products in a polymerase chain reaction (PCR) technique. Unlabeled inter-Alu PCR products from two series of human x rodent hybrids were used to prepare dot blots which were probed with labeled inter-Alu products prepared from between 10(3) and 10(4) hybrid cells. In the first series we demonstrate that a labeled inter-Alu probe from the hybrid DL18ts, containing a single chromosome 18, on a dot blot hybridized only with those inter-Alu products containing chromosome 18. Similar specificity for human chromosome 5 was shown when a Southern blot of the PCR products was hybridized with a probe made from the hybrid HHW 213, which contains only chromosome 5p. Using a dot blot from a second series of control hybrids, 15 of which contained single human chromosomes, hybridization of a labeled probe from the hybrid 18X4-1 was shown to react specifically with the controls that expressed chromosome 18. Application of the technique reported here allows simple and rapid characterization of the human chromosome content in human x rodent hybrids.  相似文献   

9.
H Sugino  M Oshimura  K Matsubara 《Genomics》1992,13(2):461-464
The human genome carries multiple copies of sequences related to endogenous retroviral genomes. We investigated the distribution of one of these sequences, HERV-A, in 24 human chromosomes by Southern analyses using DNAs from flow-sorted chromosomes or rodent cells carrying a single human chromosome. The results showed that HERV-A is distributed among all human chromosomes and that each chromosome has a specific Southern blot profile. The chromosome-specific pattern did not show significant polymorphism, except in a few cases, when the same chromosome obtained from different individuals was compared. These chromosome-specific Southern hybridization profiles may be useful for chromosome karyotyping. This would allow the integrity of human chromosomes in human-rodent somatic cell hybrids to be monitored without using conventional cytogenetic methods.  相似文献   

10.
Microcell-mediated chromosome transfer is a useful technique for the study of gene function, gene regulation, gene mapping, and functional cloning in mammalian cells. Complete panels of donor cell lines, each containing a different human chromosome, have been developed. These donor cell lines contain a single human chromosome marked with a dominant selectable gene in a rodent cell background. However, a similar panel does not exist for murine chromosomes. To produce mouse monochromosomal donor hybrids, we have utilized embryonic stem (ES) cells with targeted gene disruptions of known chromosomal location as starting material. ES cells with mutations in aprt, fyn, and myc were utilized to generate monochromosomal hybrids with neomycin phosphotransferase-marked murine Chr 8, 10, or 15 respectively in a hamster or rat background. This same methodology can be used to generate a complete panel of marked mouse chromosomes for somatic cell genetic experimentaion. Received: 28 July 1998 / Accepted: 15 December 1998  相似文献   

11.
To develop an systematic in vitro approach for the study of genomic imprinting, we generated a new library of human/mouse A9 monochromosomal hybrids. We used whole cell fusion and microcell-mediated chromosome transfer to generate A9 hybrids containing a single, intact, bsr-tagged human chromosome derived from primary fibroblasts. A9 hybrids were identified that contained either human chromosome 1, 2, 4, 5, 7, 8, 10, 11, 15, 18, 20, or X. The parental origin of these chromosomes was determined by polymorphic analysis using microsatellite markers, and matched hybrids containing maternal and paternal chromosomes were identified for chromosomes 5, 10, 11 and 15. The imprinted gene KVLQT1 on human chromosome 11p15.5 was expressed exclusively from the maternal chromosome in A9 hybrids, and the parental-origin-specific expression patterns of several other imprinted genes were also maintained. This library of human monochromosomal hybrids is a valuable resource for the mapping and cloning of human genes and is a novel in vitro system for the screening of imprinted genes and for their functional analysis.  相似文献   

12.
Following fusion of human diploid fibroblast-derived microcells with mouse A9 cells, we isolated seven monochromosomal hybrids containing a single human chromosome 2, 3, 5, 12, 15, 20, or 22. Cytogenetic analysis as well as PCR karyotyping (chromosome-specific banding pattern generated by Alu-PCR) was performed on all the hybrids. We here present, for the first time, the specific PCR karyotypes of human chromosomes 2 and 20.  相似文献   

13.
Interspersed repetitive sequence polymerase chain reaction (IRS-PCR) has become a powerful tool for the rapid generation of DNA probes from human chromosomes present in rodent somatic cell hybrids. We have constructed a somatic cell hybrid containing a major portion of the mouse X chromosome in a human background (clone 8.0). IRS-PCR was developed for the specific amplification of mouse DNA using either of two primers from the rodent-specific portion of the murine B1 repeat. Amplification was subsequently performed with clone 8.0 and a subclone, 8.1/1, which retains a small murine X-chromosomal fragment including Hprt and the Gdx locus. A total of 15-20 discrete PCR products ranging in size from less than 500 to greater than 3000 bp were obtained from clone 8.0 with each primer. In clone 8.1/1, a subset of these bands plus some additional bands were observed. Nine bands amplified from clone 8.1/1 have been excised from gels and used as probes on Southern blots. All of the fragments behaved as single-copy probes and detected domesticus/spretus variation. They have been regionally mapped using an interspecific backcross. The probe locations are compatible with those of markers known to be present in clone 8.1/1. These results demonstrate the feasibility of this method as applied to the mouse genome and the high likelihood of generating useful DNA probes from a targeted region.  相似文献   

14.
The dominant selectable gene, Ecogpt, has been introduced, by the calcium phosphate precipitation technique, into normal human fibroblasts, along with the SV40 early region genes. In one transfectant clone, integration of these sequences into human chromosome 17 was demonstrated by the construction of human-mouse somatic cell hybrids, selected for by growth in medium containing mycophenolic acid and xanthine. A whole cell hybrid, made between the human transfectant and a mouse L cell, was used as donor of the Ecogpt-carrying human chromosome 17 to 'tribrids' growing in suspension, made by whole cell fusion between a mouse thymoma cell line, and to microcell hybrids made with a mouse teratocarcinoma cell line. Two tribrids contained karyotypically normal human chromosomes 17 and a small number of other human chromosomes, while a third tribrid had a portion of the long arm of chromosome 17 translocated to mouse as its only human genetic material. Two independent microcell hybrids contained a normal chromosome 17 and no other human chromosome on a mouse teratocarcinoma background. These experiments demonstrate the ability to construct human-mouse somatic cell hybrids using a dominant selection system. By applying this approach it should be possible to select for a wide range of different human chromosomes in whole cell and microcell hybrids. In particular, transfer of single human chromosomes to mouse teratocarcinoma cells will allow examination of developmentally regulated human gene sequences after differentiation of such hybrids.  相似文献   

15.
Several methods have been described for using the polymerase chain reaction (PCR) to isolate fragments of DNA for genome mapping. We have developed an approach for isolating discrete fragments by amplifying DNA with single oligonucleotides (10-mers) with arbitrarity selected sequences. The method is rapid and technically simple. We isolated fragments from a contig of three yeast artificial chromosomes (YACs) from the human Xq28 chromosomal region. We purified YACs yWXD 37, yWXD348, and yWXD705 from a preparative pulsed field gel. Amplifications of each YAC were performed with single 10-mers as the PCR primers and the products were visualized on agarose gels. These fragments have been successfully used as hybridization probes against Southern blots containing the YACs and against blots containing human genomic DNA and somatic cell hybrids containing Xq28 as their only human constituent. The results have been concordant with the known order of the YACs. We have also successfully combined 10-mers with primers derived from vector arm sequences to isolate YAC ends. We discuss several uses of this method in comparative mapping and in filling in gaps in physical and genetic maps.  相似文献   

16.
The development and utilization of a monochromosomal hybrid cell assay for detecting aneuploidy and chromosomal aberrations are described. The monochromosomal hybrid cell lines were produced by a two-step process involving transfer of a marker bacterial gene to a human chromosome and then by integration of that human chromosome into a mouse complement of chromosomes through microcell fusion. For chemically induced aneuploidy, the segregation of a single human chromosome among mouse chromosomes is used as a cytogenetic marker. The genetic assay for aneuploidy is based on the ability of the cells to grow in a medium that selects for the loss of the human chromosome. The assay for clastogenicity is based on survival of the cells after treatment with the chemicals in medium that selects for retention of the human chromosome but loss of its segment containing diphtheria toxin locus. The assays greatly simplify the detection of chromosomal aberrations induced by environmental factors at low-dose levels.  相似文献   

17.
Mouse/human somatic cell hybrids constitute a valuable resource for both genetic and physical mapping. In this report, we describe the production and characterization of a series of six monochromosomal hybrids generated by fusion of murine microcells with intact human recipient cells. The presence of each mouse chromosome was characterized by PCR analysis and the integrity of the mouse chromosome retained in the hybrids confirmed by fluorescence in situ hybridization (FISH) analysis. Received: 22 August 1996 / Accepted: 19 September 1996  相似文献   

18.
A short-term assay utilizing a human/mouse monochromosomal hybrid cell line R3-5, to detect chemically induced aneuploidy in mammalian cells is described. A single human chromosome transferred into mouse cells was used as a cytogenetic marker to quantitate abnormal chromosome segregation following chemical treatment. The human chromosome present in the mouse cells can be readily identified by differential staining procedures. The frequency of cells containing 0 or 2 human chromosomes in the progeny of chemically treated monochromosomal hybrid cells provided a direct measure of aneuploidy. We tested the sensitivity of the proposed system with 3 model chemicals (colcemid, cyclophosphamide and benomyl) known to induce numerical or structural changes in chromosomes. The frequency of an abnormal segregation of the human chromosome was found to be dose dependent and consistently higher than controls. This system has the capability to detect gain as well as loss of a chromosome resulting from nondisjunction or other mechanisms leading to aneuploidy.  相似文献   

19.
The human fibroblast interferon gene beta 1 was mapped to human chromosome 9. Sequence homology with a beta 1 cDNA clone was detected in both genomic DNA and induced mRNA of human/mouse or human/hamster somatic cell hybrids containing human chromosome 9, but not in lines lacking this chromosome or those retaining a complex translocation involving chromosomes 9 and 11. Interferon mRNA that did not share sequence homology with the beta 1 cDNA clone was detected in lines containing human chromosomes 2 and 5 but lacking chromosome 9, suggesting the presence of other unlinked interferon sequences in the human genome.  相似文献   

20.
We have analyzed the chromosomal distribution of a large family of human endogenous retrovirus-like sequences termed RTVL-H. In situ hybridizations suggest that these sequences are found on all human chromosomes. These results also indicate that clusters or concentrations of RTVL-H elements may exist on chromosomes 1p and 7q. Southern blotting experiments using somatic cell hybrids containing either the human chromosome 3 or the X chromosome confirm the presence of multiple dispersed RTVL-H sequences on these two chromosomes. These experiments also demonstrate that distinct RTVL-H banding patterns can be detected for each chromosome. Thus, RTVL-H probes may be useful in genome mapping studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号