首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fungal colonisation originating from endophytic thalli in wood of healthy European beech trees (Fagus sylvatica) was studied. Fungi were isolated from wood immediately after felling and after incubation for 8, 16 and 24 weeks under two different drying regimes. Two media were used to isolate fungi: malt extract agar with and without thiabendazol. Thiabendazol was added to inhibit non-basidiomycetes. The two drying regimes had no influence on the species composition of the recovered mycobiota and the frequency of isolation of these species. Mycelia of basidiomycetes except Coniophora puteana emerged only from wood samples inoculated onto malt extract agar containing thiabendazol. Only a few isolates were obtained from freshly cut wood, but a great number of isolates was recovered already after eight weeks of wood incubation. Four taxa accounted for 88 % of the total number of isolates: Hypoxylon fragiforme, Trichoderma spp., and the basidio-mycetes Coniophora puteana and Fomes fomentarius. The latter had not been considered an endophyte before. The isolates of F. fomentarius were made exclusively from the stem and some large diameter branches, which are the locations of its basidiocarps on dying trees. Every isolate of F. fomentarius was genetically different as revealed by tests for somatic compatibility. Advantages of the presumed endophytic strategy of F. fomentarius are discussed. Microscopic investigations showed a great number of hyphae within the cell lumina of vessels and a distinct wood degradation already after eight weeks of wood incubation.  相似文献   

2.
Fungal communities within a naturally fallen bough of Japanese beech (Fagus crenata) were investigated with reference to chemical properties of decay columns. Five logs were cut out from the fallen bough, which ranged from 10.7 to 20.5 cm in diameter. Nine fungal species and one sterile fungus were isolated from decay columns that elongated along a longitudinal axis and were delimited by black zone lines and wood discoloration. Lampteromyces japonicus and Trichoderma spp. were isolated from all five logs. Lampteromyces japonicus and Antrodiella albocinnamomea occupied the largest volume in the logs. Lignin and carbohydrate contents, lignocellulose index (LCI), nitrogen content, and water content were different among decay columns colonized by different fungal species in each log. In L. japonicus, LCI of decay column was correlated to that of wood blocks decayed under pure culture condition by the fungi isolated from the decay columns. These results suggest that the small-scale variation in chemical properties within fallen logs of Japanese beech reflects the distribution and the decay ability of colonized fungi.  相似文献   

3.
We assessed 62 fungal strains in 31 species of wood decay fungi in the ability to decompose wood blocks of Japanese beech (Fagus crenata) under a pure culture condition. Fungi were collected in a cool temperate beech forest in Japan and isolated from the inside of beech logs and from sporocarps fruiting on logs and snags of beech that were different in diameter and decay class. Fungi in Holobasidiomycetidae showed marked decomposition of lignin and carbohydrate. These fungi were divided into three groups according to the pattern of lignin and carbohydrate utilization. Phanerochaete filamentosa decomposed lignin selectively. Lampteromyces japonicus, Steccherinum rhois, Trichaptum biforme, Stereum ostrea, Mycena haematopoda, Antrodiella albocinnamomea, Daedalea dickinsii, Daedaleopsis tricolor, Ganoderma tsunodae, and Trametes versicolor decomposed lignin and carbohydrates simultaneously. Psathyrella candolleana, Lenzites betulinus, and Trametes hirsuta decomposed carbohydrates selectively. Species in the Phragmobasidiomycetidae and in the Ascomycota caused low mass loss of wood.  相似文献   

4.
The aim of this work was to investigate the poorly understood effects of co-culturing of two white rot fungi on the production of lignin-degrading enzyme activities. Four species, Ceriporiopsis subvermispora, Physisporinus rivulosus, Phanerochaete chrysosporium and Pleurotus ostreatus were cultured in pairs to study the degradation of aspen wood and the production of lignin-degrading enzymes. Potential of co-culturing for biopulping was evaluated. Chemical analysis of decayed aspen wood blocks showed that co-culturing of C. subvermispora with P. ostreatus could significantly stimulate wood decay, when compared to monocultures. Based on the fungi tested here, however, this effect is species-specific. Other combinations of fungi were slightly stimulating or not stimulatory. The pattern of lignin degradation was altered towards the acid insoluble part of lignin especially in co-cultures where P. ostreatus was included as a partner. The use of agar plates containing the polymeric dye Poly R-478 showed elevated dye decolourization at the confrontation zone between mycelia. Laccase was significantly stimulated only in the co-culture of P. ostreatus with C. subvermispora. Manganese peroxidase activity was stimulated in co-cultures of P. ostreatus with C. subvermispora or with P. rivulosus. Immunoblotting indicated changes in lignin-degrading enzymes and/or their isoform composition in response to co-culturing. This is the first report on the effects of co-culturing of potential biopulping fungi on wood degradation, and gives basic knowledge on fungal interactions during wood decay that can be utilized in practical applications.  相似文献   

5.
The relationship between myxomycete species and the decay stage of wood of Pinus densiflora coarse woody debris was investigated in warm temperate secondary forests of western Japan. The number of species and species diversity of the myxomycete community reached the maximum on moderately decayed wood. The 25 dominant species recorded from 8 or more samples of the total 1530 samples were arranged in order of the succession index corresponding to the stage of decay. Species on slightly decayed hard pine wood were characterized by Stemonitis splendens, Enerthenema papillatum, and Physarum viride, whereas species of Cribrariaceae were found on brittle decayed soft wood increasing abundance according to the decay stages. Most of the species occurred where there was sufficient moisture preserved in the environment of the decaying wood, although S. splendens specifically emerged in low-moisture environments. Because the myxomycete species had preference to different decay stages of wood, it appears that they change sequentially during myxomycete community succession on dead pine wood according to the progression of decay.  相似文献   

6.
以采自东北林业大学帽儿山实验林场的3种白腐真菌——木蹄层孔菌(Fomes fomentarius)、鲍姆鲍姆木层孔菌(Phellinus baumiibaumii)和火木层孔菌(Phellinus igniarius)为材料,用菌落直径测量法比较3种白腐菌在马铃署葡萄糖固体培养基上的生长速度,采用菌丝体干重法比较其在马铃署葡萄糖液体培养基中的生物量变化。结果显示:马铃薯葡萄糖固体培养基上3种白腐菌均为快速生长类型,其生长速度木蹄层孔菌火木层孔菌鲍姆鲍姆木层孔菌;马铃署葡萄糖液体培养基中生物量增长速度木蹄层孔菌鲍姆鲍姆木层孔菌火木层孔菌。用比色法测量其木质纤维素酶活性,结果显示:木蹄层孔菌产锰过氧化物酶和漆酶量较高,鲍姆鲍姆木层孔菌和火木层孔菌产木质素过氧化物酶量较高;木蹄层孔菌、鲍姆鲍姆木层孔菌和火木层孔菌3种白腐菌的3种主要木质素酶(锰过氧化物酶、漆酶和木质素过氧化物酶)的表达量,种间差异显著(F=3.75*、5.20**、3.01*),白桦木屑诱导处理与对照间差异显著(F=3.84*、4.19*、5.28*);两种主要纤维素酶(葡聚糖内切酶、葡聚糖外切酶)的表达量,种间差异不显著,受碳源影响作用显著(F=3.99*、4.04*)。筛选29对引物组合,对3种白腐菌几种主要木质纤维素酶基因进行TRAP-PCR分子标记检测,比较3菌种间遗传差异,扩增总条带数为357条,多态性条带数为255条,多态性条带的比例为71.43%,其中木质素降解酶基因总多态位点比率为73.77%,纤维素降解酶基因总多态位点比率为68.97%。3种白腐菌的木质纤维素降解酶基因在种间均存在较高的遗传差异。因此,特定基因的TRAP分子标记可以用于木腐菌的遗传变异分析。  相似文献   

7.
Wood decay under the microscope   总被引:3,自引:0,他引:3  
Many aspects of the interactions between host wood structure and fungal activity can be revealed by high resolution light microscopy, and this technique has provided much of the information discussed here. A wide range of different types of decay can result from permutations of host species, fungal species and conditions within wood. Within this spectrum, three main types are commonly recognised: brown rot, white rot and soft rot. The present review explores parts of the range of variation that each of these encompasses and emphasizes that degradation modes appear to reflect a co-evolutionary adaptation of decay fungi to different wood species or the lignin composition within more primitive and advanced wood cell types. One objective of this review is to provide evidence that the terms brown rot, white rot and soft rot may not be obsolete, but rigid definitions for fungi that are placed into these categories may be less appropriate than thought previously. Detailed knowledge of decomposition processes does not only aid prognosis of decay development in living trees for hazard assessment but also allows the identification of wood decay fungi that can be used for biotechnology processes in the wood industry. In contrast to bacteria or commercial enzymes, hyphae can completely ramify through solid wood. In this review evidence is provided that wood decay fungi can effectively induce permeability changes in gymnospermous heartwood or can be applied to facilitate the identification of tree rings in diffuse porous wood of angiosperms. The specificity of their enzymes and the mild conditions under which degradation proceeds is partly detrimental for trees, but also make wood decay fungi potentially efficient biotechnological tools.  相似文献   

8.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

9.
Fukasawa Y  Osono T  Takeda H 《Mycologia》2011,103(3):474-482
We tested the decay abilities of 28 isolates from 28 lignicolous fungal species (Basidiomycota, Ascomycota and Zygomycota) with the pure culture test. We used beech wood powder in varying moisture conditions and decay stages (nondecayed, intermediately decayed and well decayed) as substrates. The weight loss in wood powder was -0.2-17.8%. Five isolates of Basidiomycota (Bjerkandera adusta, Mycena haematopus, Omphalotus guepiniformis, Trametes hirsuta, Trametes versicolor) caused high weight losses in nondecayed wood. We detected significant effects of decay stage on weight loss in wood in most isolates tested, whereas moisture content rarely had an effect on weight loss. Among Basidiomycota and Xylariaceae in Ascomycota weight loss was greater for nondecayed wood than for intermediately and well decayed wood. In contrast four isolates in Ascomycota (Scytalidium lignicola, Trichoderma hamatum, T. harzianum, T. koningii) caused substantial weight loss in intermediately and well decayed wood, although they rarely caused weight loss in nondecayed wood. Zygomycota caused low weight loss in wood. Wood decay stages also affected decomposition of wood chemical components. Acid-unhydrolyzable residue (AUR) decomposition was reduced, whereas holocellulose decomposition was stimulated by some strains of Basidiomycota and Ascomycota in well decayed wood. T. harzianum in particular caused significant weight loss of holocellulose in well decayed wood, although this fungus caused negligible weight loss of both AUR and holocellulose in nondecayed wood. We discuss these changes in the decay patterns of AUR and holocellulose with varying wood decay stages in relation to the role of fungal decomposition of woody debris in forests.  相似文献   

10.
Selective Degradation of Wood Components by White-Rot Fungi   总被引:6,自引:0,他引:6  
In order to find naturally occurring white-rot fungi which preferentially degrade lignin. 25 different species of such fungi were cultivated on pine wood blocks and on kraft lignin agar plates with and without cellulose. Due to differences in phenol oxidase reactions on the kraft lignin agar plates, the 25 fungi could be divided into two groups, 1 and 2, which also differed in other properties. The three Group I fungi Sporotrichum pulverulentum, Phanerochaete sp. L1 and Polyporus dichrous produced high levels of endo-l,4-β-glucanase and cellobiose:quinone oxidoreductase in shaking cellulose flasks and a low level of phenol oxidase in standing wood meal flasks, The four fungi Merulius tremellosus, Phlebia radiata, Pycuoporus cinnabarinus and Pleurotus ostreatus from Group 2, on the other hand, produced low levels of endo-1,4-β-glucanase and cellobiose:.quinone oxidoreductase in the cellulose. flasks and a high level of phenol oxidase in the wood meal flasks. Analyses of pine wood blocks degraded by the above-mentioned fungi in the presence of either malt extract, asparagine or NH4H2PO4 revealed that malt extract gave good lignin degradation. In the presence of this nutrient source. P. cinnabarinus, at 3.4% weight loss, even degraded 12.5% lignin without loss of cellulose or mannan. No common degradation pattern was, however, obtained using mall extract, asparagine or NH4H2PO4, It is suggested that while-rot fungi, which preferentially degrade lignin, may be found among Group 2 fungi producing large amounts of phenol oxidases.  相似文献   

11.
Further Observations on Fungi Inhabiting Pine Stumps   总被引:5,自引:0,他引:5  
Growth-rates, both on malt agar and in stump wood, of earlystump colonizers such as Fomes annosus, Pemophora gigantea,Stereum sanguinolentum, and Leptographium lundbergii are higherthan those of later-colonizing agarics. The initial invasionof stump roots usually proceeds via the stump body by fungiwhich infect the cut surface. Although stumps may dry out appreciably shortly after felling,in later stages of decay the moisture content of the wood oftenincreases considerably. Stump decomposition is associated witha succession of decay fungi, the ‘Peniophora’, ‘Hypholoma’,and ‘Tricholoma’ stages being distinguished. Severalphycomycetes and fungi imperfecti colonize decayed, but notfresh, stump wood. P. gigantea is shown to be a vigorous competitor of F. annosusfor initial colonization of stumps: it may also replace F.annosus in stumps. Gliocladium viride and Trichoderma viridecompete with wood-rotting basidiomycetes and sometimes replacethem in very decayed wood.  相似文献   

12.
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.  相似文献   

13.
Wood decay activity and coupled cellulase production were examined for freshwater lignicolous Ascomycetes, Deuteromycetes and an Oomycete. Wood decay ability was assessed by weight changes in wood and bark blocks of ash and cottonwood colonized by test fungi. Changes in wood components were also measured. Production of coupled cellulases was determined by measurement of activity of culture filtrates. Except for early successional species, most fungi caused weight loss in sapwood blocks; all species caused weight loss in bark blocks. Bark blocks were decayed more rapidly than sapwood blocks and cottonwood blocks were decayed more rapidly than those of ash. For four species examined, cellulose and lignin disappeared simultaneously, with cellulose disappearing more rapidly than lignin. All species produced extracellular exoglucanase, endoglucanase and glucosidase when grown in liquid media containing crystalline cellulose. Enzyme production by most of the species was increased by the addition of glucose.  相似文献   

14.
A screening procedure in which scanning electron microscopy was used indicated that 26 white rot fungi selectively removed lignin from various coniferous and hardwood tree species. Delignified wood from field collections had distinct micromorphological characteristics that were easily differentiated from other types of decay. The middle lamella was degraded, and the cells were separated from one another. Secondary cell wall layers that remained had a fibrillar appearance. Chemical analyses of delignified wood indicated that the cells were composed primarily of cellulose. Only small percentages of lignin and hemicellulose were evident. Delignified wood was not uniformly distributed throughout the decayed wood samples. White-pocket and white-mottled areas of the various decayed wood examined contained delignified cells, but adjacent wood had a nonselective removal of lignin where all cell wall components had been degraded simultaneously. This investigation demonstrates that selective delignification among white rot fungi is more prevalent than previously realized and identifies a large number of fungi for use in studies of preferential lignin degradation.  相似文献   

15.
The phenolic extract of Acalypha leaves inhibited growth of Gloeophyllum sepiarium and Pleurotus sp. (test wood-rot fungi) in potato dextrose agar, starch agar, starch glucose agar, carboxyl methyl cellulose agar and carboxyl methyl cellulose glucose agar. Fungicidal or fungistatic concentration of the extract (10–14 mg/ml) depended on the medium. However a lower concentration of the extract (8–10 mg/ml) in combination with Trichoderma viride culture filtrate caused a similar inhibitory pattern. Degradation of obeche (Triplochiton scleroxylon), mahogany (Khaya ivorensis) and walnut (Lovoa trichilioides) by the test fungi was limited or prevented by extract treatment of 8–10 mg/g wood. A similar inhibitory effect again occurred when a combination of T. viride filtrate and lower extract concentration (6–8 mg extract per gram of wood) was used. On-going wood decay was limited or halted by a combined treatment involving 8–12 mg extract per gram of wood depending on the fungal residence period. Treated stakes exposed to 6 months of tropical wet season retained resistance to fungal attack including soft rot. The phenolic extract of A. hispida may prove useful in an integrated chemical and biological approach to wood treatment.  相似文献   

16.
Changes in myxomycete communities and species were investigated over an 8-year period in relation to the decay state of dead Pinus densiflora Siebold & Zucc. wood on which myxomycete fruiting bodies occurred. The study was carried out during three different seasons in a pine forest in southwestern Japan. A total of 44 species and seven varieties of myxomycetes were recorded. The species richness and diversity of the annual myxomycete communities did not clearly change in relation to the series of years, but the percent similarity of the myxomycete community from the beginning of the survey through the following years tended to decrease every season. The ordination of the annual communities, analyzed using non-metric multidimensional scaling (NMDS), indicated that seasonal factors on the first axis and the decay state of the wood on the second axis were significantly related. Species colonization patterns were arranged using succession indices and the distribution of certain species at particular times of the year: Arcyria ferruginea, A. obvelata, Lamproderma arcyrionema, and Physarum viride early in the year and Stemonitopsis hyperopta, Cribraria intricata, Lindbladia cribrarioides, Lamproderma columbinum, Tubifera ferruginosa, and Trichia verrucosa later on. Changes in the relative abundance of colony sizes of several species showed annual trends. Species using slightly decayed wood at the beginning were replaced by those using more brittle wood as the years progressed. Myxomycete succession on dead wood changed through time as the wood decayed, based on species preferences for particular decay stages.  相似文献   

17.
The effect of arrival of wood resources, precolonized by Coriolus versicolor, Phlebia radiata, Stereum hirsutum, and Vuilleminia comedens, on mycelial systems of Phanerochaete velutina was studied in trays of nonsterile soil in the laboratory over 5 months. Morphological responses were quantified nondestructively using image analysis. In a parallel series of experiments, nutrient movement was also quantified nondestructively using 32P monitoring with a scintillation probe and subsequently by destructively harvesting after 155 days. The presence of a fungus occupying a newly arriving resource had major effects on deployment of biomass and on the uptake and allocation of phosphorus in the established Pha. velutina system. The effects varied depending on the species occupying the new resource. Hyphal coverage was greater in the half of the system to which new resources were added. Following addition of new resources, there was massive redeployment of biomass away from regions with no new resource when the new resource was (1) uncolonized, (2) colonized by V. comedens, or (3) colonized by S. hirsutum (although to a lesser extent with the latter), but not with others. 32P was taken up by Pha. velutina both in the vicinity of the inoculum and the new resource and was translocated to the new resource from both sites of uptake; however, the local supply contributed most. Bidirectional translocation also occurred. The results are discussed in relation to mycelial foraging strategies, nutrient translocation, and partitioning within mycelial cord systems.  相似文献   

18.
The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.  相似文献   

19.
Fungi, especially basidiomycetes, are the primary agents of woody debris decomposition in terrestrial forest ecosystems. However, quantitative data regarding the abundance and decay activity of wood-inhabiting fungi are lacking, especially for tropical and subtropical areas. This study demonstrates the dynamics of decay columns of wood-inhabiting fungi within decaying woody debris of Castanopsis sieboldii and the wood decay activities of those fungi in a subtropical natural forest. Among six basidiomycetes and two ascomycetes observed as sporocarps on fallen boles of C. sieboldii, Microporus affinis was most abundantly observed in terms of frequency of sporocarps and as percentage area of decay columns within cross-sections of boles, especially those in the early stages of decomposition. In decay columns of M. affinis, both acid-unhydrolyzable residue (AUR) and holocellulose decayed simultaneously, and wood relative density decreased to 45.8% of that of fresh C. sieboldii wood. A pure culture decay test under laboratory conditions showed that M. affinis was a strong decomposer of AUR and holocellulose. These results suggest that M. affinis has a central role in lignocellulose decomposition of wood of C. sieboldii in the early stages of decomposition.  相似文献   

20.
Seventeen isolates from white rotted beech wood and six strains from a local culture collection were evaluated for their capability to delignify beech and spruce wood selectively. Six peroxidase-positive isolates were found using a colorimetric agar plate test (Poly R-478), and genetically identified by their internal transcribed spacer (ITS1) or 28S rDNA sequences. Colonised on beech and spruce wood veneers, some of the peroxidase-positive isolates caused selective white rot on both wood species. Weight loss and lignin content of the degraded veneers were estimated from FT-NIR spectra with established linear regression models and multivariate models based on partial least squares regression (PLSR). Weight loss of the samples was also determined gravimetrically. A measure for the relative selectivity of the strains for lignin degradation was formulated and the values were calculated. Two strains that were identified as Oxyporus latemarginatus and Trametes cervina exhibited high selectivity on spruce wood, but the lignin content of the decayed wood was higher than that degraded by the reference strain Ceriporiopsis subvermispora. One strain – identified as Phlebia tremellosa – led to a lower lignin content of beech wood but caused also comparably high weight loss and thus exhibited an overall lower selectivity. The NIR spectroscopic method proved to be convenient for the quick screening of selective white rot fungi. Furthermore, the results revealed that high selectivity for lignin degradation is much more pronounced in early degradation stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号