首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family-interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1(-/-) fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.  相似文献   

2.
PTEN is one of the most frequently mutated or deleted tumor suppressors in human cancers. NEDD4-1 was recently identified as the E3 ubiquitin ligase for PTEN; however, a number of important questions remain regarding the role of ubiquitination in regulating PTEN function and the mechanisms by which PTEN ubiquitination is regulated. In the present study, we demonstrated that p34, which was identified as a binding partner of NEDD4-1, controls PTEN ubiquitination by regulating NEDD4-1 protein stability. p34 interacts with the WW1 domain of NEDD4-1, an interaction that enhances NEDD4-1 stability. Expression of p34 promotes PTEN poly-ubiquitination, leading to PTEN protein degradation, whereas p34 knockdown results in PTEN mono-ubiquitination. Notably, an inverse correlation between PTEN and p34/NEDD4-1 levels was confirmed in tumor samples from colon cancer patients. Thus, p34 acts as a key regulator of the oncogenic behavior of NEDD4-1 and PTEN.  相似文献   

3.
NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN   总被引:18,自引:0,他引:18  
The tumor suppressor PTEN, a critical regulator for multiple cellular processes, is mutated or deleted frequently in various human cancers. Subtle reductions in PTEN expression levels have profound impacts on carcinogenesis. Here we show that PTEN level is regulated by ubiquitin-mediated proteasomal degradation, and purified its ubiquitin ligase as HECT-domain protein NEDD4-1. In cells NEDD4-1 negatively regulates PTEN stability by catalyzing PTEN polyubiquitination. Consistent with the tumor-suppressive role of PTEN, overexpression of NEDD4-1 potentiated cellular transformation. Strikingly, in a mouse cancer model and multiple human cancer samples where the genetic background of PTEN was normal but its protein levels were low, NEDD4-1 was highly expressed, suggesting that aberrant upregulation of NEDD4-1 can posttranslationally suppress PTEN in cancers. Elimination of NEDD4-1 expression inhibited xenotransplanted tumor growth in a PTEN-dependent manner. Therefore, NEDD4-1 is a potential proto-oncogene that negatively regulates PTEN via ubiquitination, a paradigm analogous to that of Mdm2 and p53.  相似文献   

4.
5.
PTEN (phosphatase and tensin homologue deleted on chromosome 10), a potent tumour suppressor and multifunctional signalling protein, is under intricate regulation. In the present study, we have investigated the mechanism and regulation of PTEN ubiquitination catalysed by NEDD4-1 (neural-precursor-cell-expressed, developmentally down-regulated 4-1), a ubiquitin ligase for PTEN we identified recently. Using the reconstituted assay and cellular analysis, we demonstrated that NEDD4-1-mediated PTEN ubiquitination depends on its intact HECT (homologous to E6-associated protein C-terminus) domain. Instead of using its WW domains (protein-protein interaction domains containing two conserved tryptophan residues) as a protein interaction module, NEDD4-1 interacts with PTEN through its N-terminal region containing a C2 domain as well as the HECT domain. Strikingly, we found that a C-terminal truncated PTEN fragment binds to NEDD4-1 with higher affinity than the full-length PTEN, suggesting an intrinsic inhibitory effect of the PTEN C-terminus on PTEN-NEDD4-1 interaction. Moreover, the C-terminal truncated PTEN is more sensitive to NEDD4-1-mediated ubiquitination and degradation. Therefore the present study reveals that the C-terminus of PTEN plays a critical role in stabilizing PTEN via antagonizing NEDD4-1-induced PTEN protein decay; conversely, truncation of the PTEN C-terminus results in rapid NEDD4-1-mediated PTEN degradation, a possible mechanism accounting for attenuation of PTEN function by certain PTEN mutations in human cancers.  相似文献   

6.
The contribution of zinc-mediated neuronal death in the process of both acute and chronic neurodegeneration has been increasingly appreciated. Phosphatase and tensin homologue, deleted on chromosome 10 (PTEN), the major tumor suppressor and key regulator of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, plays a critical role in neuronal death in response to various insults. NEDD4-1-mediated PTEN ubiquitination and subsequent degradation via the ubiquitin proteosomal system have recently been demonstrated to be the important regulatory mechanism for PTEN in several cancer types. We now demonstrate that PTEN is also the key mediator of the PI3K/Akt pathway in the neuronal response to zinc insult. We used primary cortical neurons and neuroblastoma N2a cells to show that zinc treatment results in a reduction of the PTEN protein level in parallel with increased NEDD4-1 gene/protein expression. The reduced PTEN level is associated with an activated PI3K pathway as determined by elevated phosphorylation of both Akt and GSK-3 as well as by the attenuating effect of a specific PI3K inhibitor (wortmannin). The reduction of PTEN can be attributed to increased protein degradation via the ubiquitin proteosomal system, as we show NEDD4-1 to be the major E3 ligase responsible for PTEN ubiquitination in neurons. Moreover, PTEN and NEDD4-1 appear to be able to counter-regulate each other to mediate the neuronal response to zinc. This reciprocal regulation requires the PI3K signaling pathway, suggesting a feedback loop mechanism. This study demonstrates that NEDD4-1-mediated PTEN ubiquitination is crucial in the regulation of PI3K/Akt signaling by PTEN during the neuronal response to zinc, which may represent a common mechanism in neurodegeneration.  相似文献   

7.
The critical tumor suppressor PTEN is regulated by numerous post-translational modifications including phosphorylation, acetylation and ubiquitination. Ubiquitination of PTEN was reported to control both PTEN stability and nuclear localization. Notably, the HECT E3-ligase NEDD4–1 was identified as the ubiquitin ligase for PTEN, mediating its degradation and down-stream events. However, the mechanisms how NEDD4–1 is regulated by up-stream signaling pathways or interaction with other proteins in promoting PTEN degradation remain largely unclear. In the present study, we identified that the adaptor protein Numb, which is demonstrated to be a novel binding partner of NEDD4–1, plays important roles in controlling PTEN ubiquitination through regulating NEDD4–1 activity and the association between PTEN and NEDD4–1. Furthermore, we provided data to show that Numb regulates cell proliferation and glucose metabolism in a PTEN-dependent manner. Overall, our study revealed a novel regulation of the well-documented NEDD4–1/PTEN pathway and its oncogenic behavior.  相似文献   

8.
神经前体细胞表达发育性下调蛋白4(neural precursor cell expressed,developmentally down-regulated protein 4,NEDD4-1,部分文章也称NEDD4)是近年来才备受关注的肿瘤相关基因,属于E3 HECT(homologous to E6 associated protein C terminus,E6蛋白c端同源基因)泛素连接酶NEDD4样家族成员。泛素连接酶,能够参与多种蛋白质的泛素化、溶酶体及蛋白酶体的降解、胞核-胞质转位等,间接影响不同恶性肿瘤的多种信号通路。随着大量NEDD4-1与肿瘤相关实验的不断深入,目前已发现其可通过调控细胞周期、癌细胞侵袭转移、拮抗耐药性等许多途径影响肿瘤的生物学行为。在消化系统肿瘤中,NEDD4-1主要通过PTEN/PI3K/AKT、TGF-β、Hippo、LDLRAD4等多条通路促进肝细胞癌的增殖、侵袭和迁移能力;在胰腺癌中发现,NEDD4-1在PI3K/AKT信号通路中发挥癌基因作用,但在与Myc-SIRT2所形成的信号环路中,却发挥抑癌基因的作用;在胃癌和结直肠癌中,NEDD4-1所参与的信号通路与其他消化系统肿瘤均不相同,NEDD4-1能独立于PTEN/PI3K/AKT通路而发挥促进胃癌恶化、转移(EGFR信号通路)和抑制结直肠癌肿瘤生长(WNT信号通路)的作用。NEDD4-1已经成为人们治愈肿瘤的热门研究方向。本文通过系统总结NEDD4-1在不同消化系统肿瘤中的功能、信号通路和潜在抑制剂等,进行探讨NEDD4-1与不同信号通路的关系,旨为临床在癌症治疗领域提供重要的参考数据。  相似文献   

9.
The neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) plays a pivotal oncogenic role in various types of human cancers. However, the function of NEDD4 in bladder cancer has not been fully investigated. In the present study, we aim to explore whether NEDD4 governs cell proliferation, apoptosis, migration, and invasion in bladder cancer cells. Our results showed that downregulation of NEDD4 suppressed cell proliferation in bladder cancer cells. Moreover, we found that inhibition of NEDD4 significantly induced cell apoptosis. Furthermore, downregulation of NEDD4 retarded cell migration and invasion. Notably, overexpression of NEDD4 enhanced cell growth and inhibited apoptosis. Consistently, upregulation of NEDD4 promoted cell migration and invasion in bladder cancer cells. Mechanically, our Western blotting results revealed that downregulation of NEDD4 activated PTEN and inhibited Notch-1 expression, whereas upregulation of NEDD4 reduced PTEN level and increased Notch-1 level in bladder cancer cells. Our findings indicated that NEDD4 exerts its oncogenic function partly due to regulation of PTEN and Notch-1 in bladder cancer cells. These results further revealed that targeting NEDD4 could be a useful approach for the treatment of bladder cancer.  相似文献   

10.
NEDD8 is a novel ubiquitin-like protein that has been shown to conjugate to nuclear proteins in a manner analogous to ubiquitination and sentrinization. Recently, human cullin-4A was reported to be conjugated by a single molecule of NEDD8. Here, we show that human cullin-2 is also conjugated by a single molecule of the NEDD8. The C-terminal 171-amino-acid residues in human cullin-2 are sufficient for NEDD8-conjugation. In addition, the equivalent C-terminal fragments of other cullins have been shown to be conjugated by NEDD8. Mapping of the NEDD8-conjugation site revealed that Lys-689 in human cullin-2 is conjugated by NEDD8. Interestingly, the Lys residue at position 689 in cullin-2 is conserved in all cullin family members, including human cullin-1, -2, -3, -4A, -4B, and -5 and yeast cullin (Cdc53), suggesting the possibility that other cullin family members are conjugated by NEDD8/Rub1 at a Lys residue of equivalent position.  相似文献   

11.
Neonatal hypoxic-ischemic encephalopathy (HIE) often leads to neonatal death or severe, irreversible neurological deficits. Pathologically, the occurrence of massive cell death and subsequent inflammation suggested that pyroptosis, an inflammation associated programed cell death, might play a role in HIE. Here, by measuring changes of key molecules in pyroptosis pathway in HIE patients, we discovered that their elevation levels tightly correlate with the severity of HIE. Next, we demonstrated that application of MCC950, a small molecule to inhibit NLRP3 inflammasome and thus pyroptosis, substantially alleviated pyroptosis and the injury severity in rats with neonatal hypoxic-ischemic brain damage (HIBD). Mechanistically, we showed that NLRP-3/caspase-1/GSDMD axis is required for microglia pyroptosis and activation. Our data demonstrated that microglia mediated pyroptosis played a crucial role in neonatal HIE, which shed lights into the development of intervention avenues targeting pyroptosis to treat HIE and traumatic brain injuries.  相似文献   

12.
In adipose tissue, insulin controls glucose and lipid metabolism through the intracellular mediators phosphatidylinositol 3-kinase and serine-threonine kinase AKT. Phosphatase and a tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of the phosphatidylinositol 3-kinase/AKT pathway, is hypothesized to inhibit the metabolic effects of insulin. Here we report the generation of mice lacking PTEN in adipose tissue. Loss of Pten results in improved systemic glucose tolerance and insulin sensitivity, associated with decreased fasting insulin levels, increased recruitment of the glucose transporter isoform 4 to the cell surface in adipose tissue, and decreased serum resistin levels. Mutant animals also exhibit increased insulin signaling and AMP kinase activity in the liver. Pten mutant mice are resistant to developing streptozotocin-induced diabetes. Adipose-specific Pten deletion, however, does not alter adiposity or plasma fatty acids. Our results demonstrate that in vivo PTEN is a potent negative regulator of insulin signaling and insulin sensitivity in adipose tissue. Furthermore, PTEN may be a promising target for nutritional and/or pharmacological interventions aimed at reversing insulin resistance.  相似文献   

13.
Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiquitination and targets Dvl2 for proteasomal degradation. Interestingly, the NEDD4L-mediated ubiquitination of Dvl2 is Lys-6, Lys-27, and Lys-29 linked but not typical Lys-48-linked ubiquitination. Consistent with the role of Dvl in both Wnt/β-catenin and Wnt/planar cell polarity signaling, NEDD4L regulates the cellular β-catenin level and Rac1, RhoA, and JNK activities. We have further identified a hierarchical regulation that Wnt5a induces JNK-mediated phosphorylation of NEDD4L, which in turn promotes its ability to degrade Dvl2. Finally, we show that NEDD4L inhibits Dvl2-induced axis duplication in Xenopus embryos. Our work thus demonstrates that NEDD4L is a negative feedback regulator of Wnt signaling.  相似文献   

14.
《Cellular signalling》2014,26(12):2749-2756
PTEN is post-translationally modified by ubiquitin via association with multiple E3 ubiquitin ligases, including NEDD4-1, XIAP, and WWP2. Despite the rapid progress made in researching the impact of ubiquitination on PTEN function, our understanding remains fragmented. Building on the previously observed interaction between SIPL1 and PTEN, we report here that SIPL1 promotes PTEN polyubiquitination via lysine 48 (K48)-independent polyubiquitin chains. Substitution of the K48 residue of ubiquitin with arginine (R) enhanced SIPL1-mediated PTEN polyubiquitination. In contrast, the K63R substitution significantly reduced it. The ubiquitin-like (UBL) domain is required for SIPL1-induced PTEN polyubiquitination. This post-translational modification promoted the association of SIPL1 with PTEN. Elevated amounts of the SIPL1/PTEN complex were precipitated in 293T cells co-transfected with PTEN, SIPL1, and ubiquitin compared to cells co-transfected with SIPL1 and PTEN only. Additionally, formation of the SIPL1/PTEN complex was inhibited when either lysine-less (K0) ubiquitin or K63R ubiquitin was co-transfected together with SIPL1 + PTEN. The PTEN component in the SIPL1/PTEN complex contained polyubiquitin chains. The ubiquitination reaction may play a structural role, stabilizing the SIPL1/PTEN complex, as a ubiquitin binding-defective SIPL1 mutant (TFLV) is proficient in PTEN association. Collectively, we demonstrate that SIPL1 binds PTEN and enhances PTEN polyubiquitination which in turn promotes the interaction between SIPL1 and PTEN.  相似文献   

15.
16.
17.
PTEN is mutated at high frequency in many primary human cancers and several familial cancer predisposition disorders. Activation of AKT is a common event in tumors in which the PTEN gene has been inactivated. We previously showed that deletion of the murine Pten gene in embryonic stem (ES) cells led to increased phosphatidylinositol triphosphate (PIP(3)) accumulation, enhanced entry into S phase, and better cell survival. Since PIP(3) controls multiple signaling molecules, it was not clear to what degree the observed phenotypes were due to deregulated AKT activity. In this study, we mutated Akt-1 in Pten(-/-) ES cells to directly assess the role of AKT-1 in PTEN-controlled cellular processes, such as cell proliferation, cell survival, and tumorigenesis in nude mice. We showed that AKT-1 is one of the major downstream effectors of PTEN in ES cells and that activation of AKT-1 is required for both the cell survival and cell proliferation phenotypes observed in Pten(-/-) ES cells. Deletion of Akt-1 partially reverses the aggressive growth of Pten(-/-) ES cells in vivo, suggesting that AKT-1 plays an essential role in PTEN-controlled tumorigenesis.  相似文献   

18.
In the canonical Wnt signaling pathway, the translocation of β-catenin is important for the activation of target genes in the nucleus. However, the molecular mechanisms underlying its nuclear localization remain unclear. In the present study, we found IQGAP1 to be a regulator of β-catenin function via importin-β5. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of β-catenin and expression of Wnt target genes during early embryogenesis. Depletion of endogenous importin-β5 associated with IQGAP1 also reduced expression of Wnt target genes and the nuclear localization of IQGAP1 and β-catenin. Moreover, a small GTPase, Ran1, contributes to the nuclear translocation of β-catenin and the activation of Wnt target genes. These results suggest that IQGAP1 functions as a regulator of translocation of β-catenin in the canonical Wnt signaling pathway.  相似文献   

19.
Inactivation of the Rb-mediated G1 control pathway is a common event found in many types of human tumors. To test how the Rb pathway interacts with other pathways in tumor suppression, we characterized mice with mutations in both the cyclin-dependent kinase (CDK) inhibitor p18 Ink4c and the lipid phosphatase Pten, which regulates cell growth. The double mutant mice develop a wider spectrum of tumors, including prostate cancer in the anterior and dorsolateral lobes, with nearly complete penetrance and at an accelerated rate. The remaining wild-type allele of Pten was lost at a high frequency in Pten+/- cells but not in p18+/- Pten+/- or p18-/- Pten+/- prostate tumor cells, nor in other Pten+/- tumor cells, suggesting a tissue- and genetic background-dependent haploinsufficiency of Pten in tumor suppression. p18 deletion, CDK4 overexpression, or oncoviral inactivation of Rb family proteins caused activation of Akt/PKB that was recessive to the reduction of PTEN activity. We suggest that p18 and Pten cooperate in tumor suppression by constraining a positive regulatory loop between cell growth and cell cycle control pathways.  相似文献   

20.

Objective

To investigate the effect of intraventricular injection of human dental pulp stem cells (DPSCs) on hypoxic-ischemic brain damage (HIBD) in neonatal rats.

Methods

Thirty-six neonatal rats (postnatal day 7) were assigned to control, HIBD, or HIBD+DPSC groups (n = 12 each group). For induction of HIBD, rats underwent left carotid artery ligation and were exposed to 8% to 10% oxygen for 2 h. Hoechst 33324-labeled human DPSCs were injected into the left lateral ventricle 3 days after HIBD. Behavioral assays were performed to assess hypoxic-ischemic encephalopathy (HIE), and on postnatal day 45, DPSC survival was assessed and expression of neural and glial markers was evaluated by immunohistochemistry and Western blot.

Results

The HIBD group showed significant deficiencies compared to control on T-maze, radial water maze, and postural reflex tests, and the HIBD+DPSC group showed significant improvement on all behavioral tests. On postnatal day 45, Hoechst 33324-labeled DPSC nuclei were visible in the injected region and left cortex. Subsets of DPSCs showed immunostaining for neuronal (neuron-specific enolase [NSE], Nestin) and glial markers (glial fibrillary acidic protein [GFAP], O4). Significantly decreased staining/expression for NSE, GFAP, and O4 was found in the HBID group compared to control, and this was significantly increased in the HBID+DPSC group.

Conclusion

Intraventricular injection of human DPSCs improves HIBD in neonatal rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号