首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.  相似文献   

2.
Cyclical parthenogens are a valuable system in which to empirically test theoretical predictions as to the genetic consequences of sexual reproduction in natural populations, particularly if the frequency of sexual relative to asexual reproduction can be quantified. In this study, we used a series of lake populations of the cyclical parthenogen, Daphnia pulicaria, that vary consistently in their investment in sexual reproduction, to address the questions of whether the ecological variation in investment in sex is detectable at the genetic level, and if so, whether the genetic patterns seen are consistent with theoretical predictions. We show that there is variation in the genetic structure of these populations in a manner consistent with their investment in sexual reproduction. Populations engaging in a high frequency of sex were in Hardy-Weinberg and gametic phase equilibrium, and showed little genotypic differentiation across sampled years. In contrast, populations with a lower frequency of sex deviated widely from equilibrium, had reduced multilocus clonal diversity, and showed significant temporal genotypic deviation.  相似文献   

3.
The reproductive mode of facultative parthenogens allows recessive mutations that accumulate during the asexual phase to be unmasked following sexual reproduction. Longer periods of asexual reproduction should increase the accumulation of deleterious mutations within individuals, reduce population-level genetic diversity via competition and increase the probability of mating among close relatives. Having documented that the investment in sexual reproduction differs among populations and clones of Daphnia pulicaria , we ask if this variation is predictive of the level of inbreeding depression across populations. In four lake populations that vary in sex investment, we raised multiple families (mother, field-produced daughter, laboratory-produced daughter) on high food and estimated the fitness reduction in both sexually produced offspring relative to the maternal genotype. Inbred individuals had lower fitness than their field-produced siblings. The magnitude of fitness reduction in inbred offspring increased as population-level investment in sex decreased. However, there was less of a fitness reduction following sex in the field-produced daughters, suggesting that many field-collected mothers were involved in outcross mating.  相似文献   

4.
R M Binks  M A Millar  M Byrne 《Heredity》2015,115(3):235-242
For plants with mixed reproductive capabilities, asexual reproduction is more frequent in rare species and is considered a strategy for persistence when sexual recruitment is limited. We investigate whether asexual reproduction contributes to the persistence of two co-occurring, rare sedges that both experience irregular seed set and if their differing geographic distributions have a role in the relative contribution of clonality. Genotypic richness was high (R=0.889±0.02) across the clustered populations of Lepidosperma sp. Mt Caudan and, where detected, clonal patches were small, both in ramet numbers (⩽3 ramets/genet) and physical size (1.3±0.1 m). In contrast, genotypic richness was lower in the isolated L. sp. Parker Range populations, albeit more variable (R=0.437±0.13), with genets as large as 17 ramets and up to 5.8 m in size. Aggregated clonal growth generated significant fine-scale genetic structure in both species but to a greater spatial extent and with additional genet-level structure in L. sp. Parker Range that is likely due to restricted seed dispersal. Despite both species being rare, asexual reproduction clearly has a more important role in the persistence of L. sp. Parker Range than L. sp. Mt Caudan. This is consistent with our prediction that limitations to sexual reproduction, via geographic isolation to effective gene exchange, can lead to greater contributions of asexual reproduction. These results demonstrate the role of population isolation in affecting the balance of alternate reproductive modes and the contextual nature of asexual reproduction in rare species.  相似文献   

5.
Asexual reproduction avoids the costs associated with sex, predicting that invading asexual clones can quickly replace sexual populations. Daphnia pulex populations in the Great Lakes area are predominately asexual, but the elimination of sexual populations by invading clones is poorly understood. Asexual clones were detected at low frequency in one rare sexual population in 1995, with some increase in frequency during 2003 and 2004. However, these clones remained at low frequency during further yearly sampling (2005–2013) with no evidence that the resident sexual population was in danger of elimination. There was evidence for hybridization between rare males produced by asexual clones and sexual females with the potential to produce new asexual genotypes and spread the genetic factors for asexuality. In a short-term laboratory competition experiment, the two most common asexual clones did not increase in frequency relative to a genetically diverse sexual population due in part to a greater investment in diapausing eggs that trades-off current population growth for increased contribution to the egg bank. Our results suggest that a successful invasion can be prolonged, requiring a combination of clonal genotypes with high fitness, persistence of clones in the egg bank and negative factors affecting the sexual population such as inbreeding depression resulting from population bottlenecks.  相似文献   

6.
Important questions remain about the long-term survival and adaptive significance of eukaryotic asexual lineages. Numerous papers dealing with sex advantages still continued to compare parthenogenetic populations versus sexual populations arguing that sex demonstrates a better fitness. Because asexual lineages do not possess any recombination mechanisms favoring rapid changes in the face of severe environmental conditions, they should be considered as an evolutionary dead-end. Nevertheless, reviewing literature dealing with asexual reproduction, it is possible to draw three stimulating conclusions. (1) Asexual reproduction in eukaryotes considerably differs from prokaryotes which experience recombination but neither meiosis nor syngamy. Recombination and meiosis would be a driving force for sexual reproduction. Eukaryotes should therefore be considered as a continuum of sexual organisms that are more or less capable (and sometimes incapable) of sexual reproduction. (2) Rather than revealing ancestral eukaryotic forms, most known lineages of asexual eukaryotes have lost sex due to a genomic conflict affecting their sexual capacity. Thus, it could be argued that hybridization is a major cause of their asexuality. Asexuality may have evolved as a reproductive mechanism reducing conflict within organisms. (3) It could be proposed that, rather than being generalists, parthenogenetic hybrid lineages could be favored when exploiting peculiar restricted ecological niches, following the “frozen niche variation” model. Although hybrid events may result in sex loss, probably caused by genomic conflict, asexual hybrids could display new original adaptive traits, and the rapid colonization of environments through clonal reproduction could favor their long-term survival, leading to evolutionary changes and hybrid speciation. Examination of the evolutionary history of asexual lineages reveals that evolutionary processes act through transitional stages in which even very small temporary benefits may be enough to counter the expected selective disadvantages.  相似文献   

7.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

8.
We studied the impact of flooding and light availability gradients on sexual and asexual reproduction in Lindera melissifolia (Walt.) Blume, an endangered shrub found in floodplain forests of the Mississippi Alluvial Valley (MAV), USA. A water impoundment facility was used to control the duration of soil flooding (0, 45, or 90 days), and shade houses were used to control light availability (high = 72%, intermediate = 33%, or low = 2% of ambient light) received by L. melissifolia established on native soil of the MAV. Sexual reproductive intensity, as measured by inflorescence bud count, fruit set, and drupe production, was greatest in the absence of soil flooding. Ninety days of soil flooding in the year prior to anthesis decreased inflorescence bud counts, and 45 days of soil flooding in the year of anthesis lessened fruit set and drupe production. Inflorescence bud development was the greatest in environments of intermediate light, decreased in high‐light environments, and was absent in low light environments. But low fruit set diminished drupe production in intermediate light environments as compared to high light environments. Asexual reproduction, as measured by development of new ramets, was greatest in the absence of soil flooding and where plants were grown in high or intermediate light. Plants exhibited plasticity in reproductive mode such that soil flooding increased the relative importance of asexual reproduction. The high light environment was most favorable to sexual reproduction, and reproductive mode transitioned to exclusively asexual in the low light environment. Our results raise several implications important to active management for the conservation of this imperiled plant.  相似文献   

9.
Background and AimsTraditionally, local adaptation has been seen as the outcome of a long evolutionary history, particularly with regard to sexual lineages. By contrast, phenotypic plasticity has been thought to be most important during the initial stages of population establishment and in asexual species. We evaluated the roles of adaptive evolution and phenotypic plasticity in the invasive success of two closely related species of invasive monkeyflowers (Mimulus) in the UK that have contrasting reproductive strategies: M. guttatus combines sexual (seeds) and asexual (clonal growth) reproduction while M. × robertsii is entirely asexual.MethodsWe compared the clonality (number of stolons), floral and vegetative phenotype, and phenotypic plasticity of native (M. guttatus) and invasive (M. guttatus and M. × robertsii) populations grown in controlled environment chambers under the environmental conditions at each latitudinal extreme of the UK. The goal was to discern the roles of temperature and photoperiod on the expression of phenotypic traits. Next, we tested the existence of local adaptation in the two species within the invasive range with a reciprocal transplant experiment at two field sites in the latitudinal extremes of the UK, and analysed which phenotypic traits underlie potential local fitness advantages in each species.Key ResultsPopulations of M. guttatus in the UK showed local adaptation through sexual function (fruit production), while M. × robertsii showed local adaptation via asexual function (stolon production). Phenotypic selection analyses revealed that different traits are associated with fitness in each species. Invasive and native populations of M. guttatus had similar phenotypic plasticity and clonality. M. × robertsii presents greater plasticity and clonality than native M. guttatus, but most populations have restricted clonality under the warm conditions of the south of the UK.ConclusionsThis study provides experimental evidence of local adaptation in a strictly asexual invasive species with high clonality and phenotypic plasticity. This indicates that even asexual taxa can rapidly (<200 years) adapt to novel environmental conditions in which alternative strategies may not ensure the persistence of populations.  相似文献   

10.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

11.
Sexual reproduction and asexual reproduction by fission were studied in four populations of Coscinasterias calamaria (Gray), two in Otago Harbour in the South Island of New Zealand and two in the North Island near Auckland. The annual reproductive cycle in both islands of New Zealand is clearly defined with a spawning season between November and January. In both sites the pyloric caeca index was approximately inverse to the gonad index cycle as found in other forcipulate asteroids. There are substantial differences in the sex ratios of mature starfish at each site studied, with 1:1 ratios in two populations, one population heavily biased towards females and the fourth consisting almost entirely of males. Morphometric variation in arm number due to splitting was studied and the frequency of splitting varied considerably between the four populations. Generally speaking sublittoral C. calamaria divide less frequently than intertidal starfish and populations in which food is less abundant or of poorer quality are more fissiparous and put less energy into sexual reproduction, than populations with plentiful readily available food in the form of mussels. The significance of the different reproductive patterns in C. calamaria is discussed.  相似文献   

12.
Cyclical parthenogenesis presents an interesting challenge for the study of sex allocation, as individuals’ allocation decisions involve both the choice between sexual and asexual reproduction, and the choice between sons and daughters. Male production is therefore expected to depend on ecological and evolutionary drivers of overall investment in sex, and those influencing male reproductive value during sexual periods. We manipulated experimental populations, and made repeated observations of natural populations over their growing season, to disentangle effects of population density and the timing of sex from effects of adult sex ratio on sex allocation in cyclically parthenogenetic Daphnia magna. Male production increased with population density, the major ecological driver of sexual reproduction; however, this response was dampened when the population sex ratio was more male‐biased. Thus, in line with sex ratio theory, we show that D. magna adjust offspring sex allocation in response to the current population sex ratio.  相似文献   

13.
Facultative sexual species employ a dual reproductive strategy (heterogony) comprising primarily asexual reproduction with intermittent sexual reproduction. Given the higher relative costs of sexual reproduction, elucidating the triggers underlying these transitions might help our understanding of the evolution of (obligate) sex in general. Existing hypotheses into how and when facultative sexuals invest into sex focus largely either on environmental (habitat-deterioration and resource-demanding hypotheses) or genetic factors (condition-dependent hypothesis), but tend to lack experimental evidence, especially with respect to within-population variation. To address this deficit, we examined the influence of several variables that potentially affect fitness (food quality, water temperature, physiological acclimation, and all combinations thereof) on both the lifetime reproduction (total number of offspring) and investment into sexual offspring per female in a clonal population of the monogonont rotifer Brachionus rubens. Investment into sex, both absolutely and relative to lifetime reproduction, was tied most closely to and positively correlated with individual fitness (i.e., lifetime reproduction): individuals with higher fitness invested more into sexual reproduction. These results run contra to the condition-dependent hypothesis and indicate an energy-budget analogue of the resource-demanding hypothesis. Furthermore, investment into sex increased after a period of physiological acclimation to the new conditions, probably because of the amelioration of short-term stress effects or clonal selection. Our results underscore that life history and general phenotypic considerations—here, energetic provisioning of offspring, the presence of a sexual resting stage, and the relative timing of sexual versus asexual reproduction—can modify existing hypotheses based either on environmental or genetic factors alone.  相似文献   

14.
Dormancy is an ecological strategy by which organisms avoid stressful environments, but it also can have genetic consequences. Many facultative parthenogens shift from asexual to sexual reproduction to enter dormancy. Hence, conditions that favour dormancy are predicted to select for more sex, which should increase clonal diversity. We examined lake populations of Daphnia that face different ecological risks to remaining active year‐round, and quantified the extent to which they have differentiated in their investment in dormancy and sex. There was substantial genetic variation among populations and clones for sex induction and production of dormant eggs, and striking evidence of gender specialization. We also observed a positive association between the magnitudes of population‐level investment in dormancy and of variance among clones in sex induction. These results document an ecological gradient in dormancy that is manifest as a genetic gradient in clonal variation for the propensity to engage in sex.  相似文献   

15.
Organisms with coexisting sexual and asexual populations are ideal models for studying the consequences of either reproductive mode on the quantitative genetic architecture of life-history traits. In the aphid Rhopalosiphum padi, lineages differing in their sex investment coexist but all share a common parthenogenetic phase. Here, we studied multiple genotypes of R. padi specialized either for sexual and asexual reproduction and compared their genetic variation in fitness during the parthenogenetic phase. Specifically, we estimated maintenance costs as standard metabolic rate (SMR), together with fitness (measured as the intrinsic rate of increase and the net reproductive rate). We found that genetic variation (in terms of broad-sense heritability) in fitness was higher in asexual genotypes compared with sexual genotypes. Also, we found that asexual genotypes exhibited several positive genetic correlations indicating that body mass, whole-animal SMR, and apterous individuals production are contributing to fitness. Hence, it appears that in asexual genotypes, energy is fully allocated to maximize the production of parthenogenetic individuals, the simplest possible form of aphid repertoire of life-histories strategies.  相似文献   

16.
Asexual Epichloë species are likely derived directly from sexual Epichloë species that then lost their capacity for sexual reproduction or lost sexual reproduction because of interspecific hybridization between distinct lineages of sexual Epichloë and/or asexual Epichloë species. In this study we isolated asexual Epichloë endophytes from Elymus species in western China and sequenced intron-rich regions in the genes encoding β-tubulin (tubB) and translation elongation factor 1-α (tefA). Our results showed that there are no gene copies of tubB and tefA in any of the isolates. Phylogenetic analysis showed that sequences in this study formed a single clade with asexual Epichloë bromicola from Hordeum brevisubulatum, which implies asexual Epichloë endophytes that are symbionts in a western Chinese Elymus species likely share a common ancestor with asexual E. bromicola from European H. brevisubulatum. In addition, our results revealed that asexual E. bromicola isolates that are symbionts in a western Chinese Elymus species and sexual Epichloë species that are symbionts in a North American Elymus species have a different origin. Further analysis found that Epichloë species likely originated in Eurasia. In addition, the results support the hypothesis that migratory birds or humans might have aided the dispersal of these fungal endophytes to other continents.  相似文献   

17.
Synergism among mutations can lead to an advantage to sexual reproduction, provided mutation rates are high enough (the mutational deterministic hypothesis). Here we tested the idea that competition for food can increase the advantage to sexual reproduction, perhaps by increasing the synergism among mutations in asexual individuals. We compared the survivorship of sexual and asexual snails (Potamopyrgus antipodarum) under two treatments: starved and fed. We predicted higher mortality for asexual snails when starved, but found that sexual and asexual individuals survived at the same rate, independent of treatment. These results suggest that the distribution of sex in this snail may not be explained by variation in competition among populations.  相似文献   

18.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

19.
Although evolutionary transitions from sexual to asexual reproduction are frequent in eukaryotes, the genetic bases of such shifts toward asexuality remain largely unknown. We addressed this issue in an aphid species where both sexual and obligate asexual lineages coexist in natural populations. These sexual and asexual lineages may occasionally interbreed because some asexual lineages maintain a residual production of males potentially able to mate with the females produced by sexual lineages. Hence, this species is an ideal model to study the genetic basis of the loss of sexual reproduction with quantitative genetic and population genomic approaches. Our analysis of the co-segregation of ∼300 molecular markers and reproductive phenotype in experimental crosses pinpointed an X-linked region controlling obligate asexuality, this state of character being recessive. A population genetic analysis (>400-marker genome scan) on wild sexual and asexual genotypes from geographically distant populations under divergent selection for reproductive strategies detected a strong signature of divergent selection in the genomic region identified by the experimental crosses. These population genetic data confirm the implication of the candidate region in the control of reproductive mode in wild populations originating from 700 km apart. Patterns of genetic differentiation along chromosomes suggest bidirectional gene flow between populations with distinct reproductive modes, supporting contagious asexuality as a prevailing route to permanent parthenogenesis in pea aphids. This genetic system provides new insights into the mechanisms of coexistence of sexual and asexual aphid lineages.  相似文献   

20.
Organisms reproducing by cyclical parthenogenesis combine the benefits of both sexual and asexual reproduction within the same life cycle. Few studies have examined the evolution of variation in the pattern of investment in parthenogenetic compared to sexual reproduction. Seven clones of Daphnia pulex (Crustacea: Cladocera) varying in allocation to sexual reproduction, as measured by the production of males, were raised in isolation and together in a microcosm to study the pattern of sexual reproduction and the effect of this variation on clone fitness. Sex allocation for clones raised together a microcosm was similar to their allocation when raised in isolation, suggesting a genetic basis to the variation. Three clones showed a cost of producing males that lead to their extinction after about 30 days due to the lack of females required for the clones to persist by parthenogenetic reproduction. The remaining four clones persisted until the end of the 72-day experiment. Clones with little or no allocation to males showed no increased allocation to sexual females. The seven clones showed a greater variation in estimated fitness through male and female function than in total estimated fitness. The clone with the greatest total fitness gained most of its fitness through male function but also had a relatively high fitness through female function. Although one clone produced only females it had the next highest fitness. The three clones that went extinct because of a high investment in males had estimated fitness as high as some clones that persisted in the microcosm because of a higher investment in parthenogenetic reproduction. The similarity in total fitness among clones suggests that Daphnia pulex populations in temporary habitats maintain a sex polymorphism where different genotypes vary-in functional gender ranging from female to primarily male.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号