首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
About two-thirds of the hexose of human and rabbit immunoglobulin G (IgG) was located in the Fc fragment and one-third in the `hinge' region of the γ (heavy) polypeptide chain at the junction of the Fab and Fc fragments. In contrast, bovine IgG contained more hexose in the `hinge' region than in the Fc fragment. The initial cleavage of susceptible IgG molecules into Fab and Fc fragments by papain under the conditions given by Porter (1959) had reached completion after digestion for 2hr., though bovine IgG was digested somewhat more slowly than human or rabbit IgG. The release of `hinge' peptides from human and rabbit IgG had also reached completion by 2hr., but was slower from bovine IgG and continued for several hours longer. Since bovine IgG molecules contained on the average a greater amount of hexose in the `hinge' region, carbohydrate on this part of the γ-chain may influence not only the initial rate of enzymic hydrolysis into Fab and Fc fragments, but also, and to a greater extent, the rate of further limited hydrolysis of the N-terminal regions of the Fc fragment. The presence of carbohydrate in the `hinge' region does not appear to account for the resistance of some IgG molecules to papain digestion and of some Fc fragments to N-terminal degradation.  相似文献   

2.
Intact rabbit immunoglobulin G molecules (IgGs) and their papain or pepsin fragments were radio-iodinated and injected into HeLa cells. Whole IgGs, Fab2, and Fc fragments were degraded with half-lives of 60- 90 h, whereas half-lives of Fab fragments were 110 h. These results indicate that proteolytic cleavage in the hinge region of the IgG molecule is not the rate-limiting step in its intracellular degradation. The hingeless human myeloma protein, Mcg, was degraded at the same rate as bulk human IgG, providing further evidence that the proteolytically susceptible hinge region is not important for intracellular degradation of IgG molecules. SDS acrylamide gel analysis of injected rabbit IgG molecules revealed that heavy and light chains were degraded at the same rate. Injected rabbit IgGs and rabbit IgG fragments were also examined on isoelectric focusing gels. Fab, Fab2, and Fc fragments were degraded without any correlation with respect to isoelectric point. Positively charged rabbit IgGs disappeared more rapidly than their negative counterparts, contrary to the trend reported for normal intracellular proteins. The isoelectric points of two mouse monoclonal antibodies were essentially unchanged after injection into HeLa cells, suggesting that the altered isoelectric profile observed for intact rabbit IgG resulted from degradation and not protein modification. The intracellular distributions of IgG fragments and intact rabbit IgG molecules were determined by autoradiography of thin sections through injected cells. Intact IgG molecules were excluded from HeLa nuclei whereas both Fab and Fc fragments readily entered them. Thus, for some proteins, entry into the nuclear compartment is determined primarily by size.  相似文献   

3.
Glycosylation in the CH2 domain of Fc is required for immunoglobulins G (IgGs) to exhibit immune effector functions including complement-dependent cytotoxicity (CDC) and antibody-dependent (Ab-dependent) cellular cytotoxicity (ADCC). We recently established that glycosylated Abs are more resistant to papain digestion than non-glycosylated IgGs (Biochem. Biophys. Res. Commun. 2006, 341, 797-803). To test whether specific Fc glycan structures affect Ab resistance to papain, we used in vitro glycoengineering methods to prepare homogeneous Ab glycoforms terminated with either sialic acid (G2S2), beta-galactose (G2), or N-acetylglucosamine (G0) and subjected them to papain digestions. Analyses of aliquots taken at different times during the digestions by matrix-assisted laser desorption-time-of-flight-mass spectroscopy (MALDI-TOF-MS) and high-performance liquid chromatography (HPLC) methods showed that the G0 glycoform was at least two times more resistant to papain digestion than the G2 and G2S2 glycoforms. The increased resistance of the G0 glycoform over the G2 and G2S2 glycoforms was independent of the specific Ab analyzed. A mouse/human chimeric version of Ab1, a fully human version of Ab2, and a humanized version of Ab3 exhibited a similar pattern of glycoform-dependent resistance. These data suggest that terminal sugars of Fc glycans may play important roles in Ab stability and affect resistance to proteases in addition to impacting Ab effector functions.  相似文献   

4.
The stability of Immunoglobulin G (IgG) affects production, storage and usability, especially in the clinic. The complex thermal and isothermal transitions of IgGs, especially their irreversibilities, pose a challenge to the proper determination of parameters describing their thermodynamic and kinetic stability. Here, we present a reliable mathematical model to study the irreversible thermal denaturations of antibody variants. The model was applied to two unrelated IgGs and their variants with stabilizing mutations as well as corresponding non‐glycosylated forms of IgGs and Fab fragments. Thermal denaturations of IgGs were analyzed with three transitions, one reversible transition corresponding to CH2 domain unfolding followed by two consecutive irreversible transitions corresponding to Fab and CH3 domains, respectively. The parameters obtained allowed us to examine the effects of these mutations on the stabilities of individual domains within the full‐length IgG. We found that the kinetic stability of the individual Fab fragment is significantly lowered within the IgG context, possibly because of intramolecular aggregation upon heating, while the stabilizing mutations have an especially beneficial effect. Thermal denaturations of non‐glycosylated variants of IgG consist of more than three transitions and could not be analyzed by our model. However, isothermal denaturations demonstrated that the lack of glycosylation affects the stability of all and not just of the CH2 domain, suggesting that the partially unfolded domains may interact with each other during unfolding. Investigating thermal denaturation of IgGs according to our model provides a valuable tool for detecting subtle changes in thermodynamic and/or kinetic stabilities of individual domains.  相似文献   

5.
A prototypic IgG antibody can be divided into two major structural units: the antigen-binding fragment (Fab) and the Fc fragment that mediates effector functions. The IgG Fc fragment is a homodimer of the two C-terminal domains (CH2 and CH3) of the heavy chains. Characteristic of the Fc part is the presence of a sugar moiety at the inner face of the CH2 domains. The structure of this complex branched oligosaccharide is generally resolved in crystal structures of Fc fragments due to numerous well-defined sugar-protein interactions and a small number of sugar-sugar interactions. This suggested that sugars play an important role in the structure of the Fc fragment. To address this question directly, we determined the crystal structure of the unglycosylated Fc fragment of the murine IgG1 MAK33. The structures of the CH3 domains of the unglycosylated Fc fragment superimpose perfectly with the structure of the isolated MAK33 CH3 domain. The unglycosylated CH2 domains, in contrast, approach each other much more closely compared to known structures of partly deglycosylated Fc fragments with rigid-body motions between 10 and 14 Å, leading to a strongly “closed” conformation of the unglycosylated Fc fragment. The glycosylation sites in the C′E loop and the BC and FG loops are well defined in the unglycosylated CH2 domain, however, with increased mobility and with a significant displacement of about 4.9 Å for the unglycosylated Asn residue compared to the glycosylated structure. Thus, glycosylation both stabilizes the C′E-loop conformation within the CH2 domain and also helps to ensure an “open” conformation, as seen upon Fc receptor binding. These structural data provide a rationale for the observation that deglycosylation of antibodies often compromises their ability to bind and activate Fcγ receptors.  相似文献   

6.
Normal bovine colostral immunoglobulin G1 was subjected to enzymic digestion (pepsin, papain and trypsin) and the resulting fragments separated by a combination of molecularsieve and phosphocellulose chromatography.Fragments F(ab')2 derived from peptic digestion, fragment Fab from papain digestion and fragment Fab(t) from tryptic digestion showed complete antigenic identity with each other. Although fragment F(ab')2 (peptic digestion) had a sedimentation coefficient (S2o,w) of 5.3S, those for fragments Fab' (peptic digestion), Fab (papain digestion) and Fab(t) (tryptic digestion) were found to be 3.9S, 3.7S and 3.7S respectively. The mol.wts. calculated for the various fragments from the sedimentation equilibrium data were: F(ab')2, 104000 +/-200; Fab', 51900+/-340; Fab, 50900+/-230; Fab(t) 50900+/-300. Fragment Fc' (peptic digestion) had an S20,w of 3.2S and a mol. wt. of 42900+/-650; fragment Fc (papain digestion) had an SI0,w of 3.7S and a mol.wt. of 50800+/-300; fragment Fc(t) had an S20,w of 3.7S and a mol.wt. of 50800+/-300; fragment Fc(t) had an S20,w of 3.7S and a mol.wt. of 50800+/-450.  相似文献   

7.
Binding of allergen-IgE complexes to the high affinity IgE receptor (Fc epsilonRI) on mast cells and basophils leads to the release of various mediaters such as histamine. Fab fragments prepared by the papain digestion of humanized antibody against human Fc epsilonRI inhibited the release of histamine from human basophils. Here we established an expression system to directly produce Fab fragments of the humanized anti-human Fc epsilonRI antibody in methylotropic yeast, P. pastoris. Fab fragments were efficiently secreted into the medium at a concentration of 10-40 mg/L using a signal sequence from the P. pastoris phosphatase gene. They were consisted of disulfide-linked light and heavy chains correctly starting from the first amino acid residues by proper cleavage of the signal peptides. The obtained Fab fragments inhibited the binding between IgE and Fc epsilonRI as efficiently as the counterpart prepared by papain digestion of the whole antibody.  相似文献   

8.
Variable (Fv) domain N-glycosylation sites are found in approximately 20% of human immunoglobulin Gs (IgGs) in addition to the conserved N-glycosylation sites in the C(H)2 domains. The carbohydrate structures of the Fv glycans and their impact on in vivo half-life are not well characterized. Oligosaccharide structures in a humanized anti-Abeta IgG1 monoclonal antibody (Mab) with an N-glycosylation site in the complementary determining region (CDR2) of the heavy chain variable region were elucidated by LC/MS analysis following sequential exoglycosidase treatments of the endoproteinase Lys-C digest. Results showed that the major N-linked oligosaccharide structures in the Fv region have three characteristics (core-fucosylated biantennary oligosaccharides with one or two N-glycolylneuraminic acid [NeuGc] residues, zero or one alpha-linked Gal residue, and zero or one beta-linked GalNAc residue), whereas N-linked oligosaccharides in the Fc region contained typical Fc glycans (core-fucosylated, biantennary oligosaccharides with zero to two Gal residues). To elucidate the contribution of Fv glycans to the half-life of the antibody, a method that allows capture of the Mab and determination of its glycan structures at various time points after administration to mice was developed. Anti-Abeta antibody in mouse serum was immunocaptured by immobilized goat anti-human immunoglobulin Fc(gamma) antibody resin, and the captured material was treated with papain to generate Fab and Fc for LC/MS analysis. Different glycans in the Fc region showed the same clearance rate as demonstrated previously. In contrast to many other non-antibody glycosylated therapeutics, there is no strong correlation between oligosaccharide structures in the Fv region and their clearance rates in vivo. Our data indicated that biantennary oligosaccharides lacking galactosylation had slightly faster clearance rates than other structures in the Fv domain.  相似文献   

9.
本实验采用木瓜酶水解,SPA柱亲合层析等手段得到人IgGFc段及Fab段,以Sigma抗人IgGfFc段和抗人IgG Fab段单抗为标准品,鉴定了细胞库中抗人IgG系列的部分细胞株,得到特异性分泌抗人IgG Fc段和抗人IgG Fab段单抗的细胞各一株。 在上述实验基础上,用抗人IgG Fc及抗人IgG Fab单抗分别制备了Sepharose4B亲合层析柱,提纯了酶解人IgG Fc、Fab片段,经ELISA法鉴定,相互之间无交叉反应。同时用此方法制备了人抗HBe Fab片段,并将该片段进行了过氧化物酶标记,用来配制HBe ELISA诊断盒,证明其生物活性未受影响,而且消除了类风湿因子引起的HBe Ag假阳性现象。因抗HBe单抗来源困难,如采用HBe多抗制备ELISA试剂,本法将是提高质量的一个好方法。  相似文献   

10.
Binding of allergen-IgE complexes to the high affinity IgE receptor (FcεRI) on mast cells and basophils leads to the release of various mediaters such as histamine. Fab fragments prepared by the papain digestion of humanized antibody against human FcεRI inhibited the release of histamine from human basophils. Here we established an expression system to directly produce Fab fragments of the humanized anti-human FcεRI antibody in methylotropic yeast, P. pastoris. Fab fragments were efficiently secreted into the medium at a concentration of 10-40 mg/L using a signal sequence from the P. pastoris phosphatase gene. They were consisted of disulfide-linked light and heavy chains correctly starting from the first amino acid residues by proper cleavage of the signal peptides. The obtained Fab fragments inhibited the binding between IgE and FcεRI as efficiently as the counterpart prepared by papain digestion of the whole antibody.  相似文献   

11.
To localize essential epitopes of rabbit IgG, a series of proteolytic IgG fragments obtained by papain (Fab, Fc) or pepsin (pFc', F(ab')2) proteolysis have been prepared and their interaction with sheep antibodies against rabbit IgG has been studied. The data obtained suggest that essential immunoreactive epitopes of rabbit IgG are located in the CH2 domain and hinge region. This finding is in line with the results obtained by computing the antigenic sites of immunoglobulins. However, the deviation from the computed antigenic structure was deduced from the complete lack of immunoreactivity of the pFc fragment, it being a dimer of the terminal CH3 domain of the Fc fragment. The hinge region comparable in size with the dimensions of the epitope reveals high affinity binding to anti-IgG, thus testifying to the localization of the expressed epitope or its essential part in the hinge region. Proteolytic cleavage of this region leads to a significant decrease in the binding of the IgG fragment to anti-IgG. In addition to the CH2 domain and hinge region, a relatively low interaction of the antigen-binding antibody fragments with anti-IgG was found.  相似文献   

12.
Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation, and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of intravenous IgG requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of intravenous IgG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully disialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro-inflammatory to anti-inflammatory activity of the Fc.  相似文献   

13.
Prolonged papain digestion of rat IgG2a produced two molecular species of Fc fragments, termed Fc(I) and Fc(II). Studies by gel filtration chromatography and polyacrylamide gel electrophoresis in SDS/urea indicated that the two subunit polypeptide chains in each Fc preparation were associated by non-covalent bonds only. By analytical ultracentrifugation Fc(I) was found to have a m.w. of 47,100 and a sedimentation coefficient of 4.08S. Fc(II) had a m.w. of 39,800 and a sedimentation coefficient of 3.83S. The m.w. for the subunit chains of Fc(I) and Fc(II) were 25,300 and 20,300, respectively, as determined by analytical ultracentrifugation under dissociating conditions. Calculation of the frictional coefficient ratios indicated that both Fc fragments possessed compact globular structures. The difference in size between these two Fc fragments probably was due to a loss of some carboxy-terminal residues in Fc(II). Both Fc fragments possessed nearly identical amino-terminal amino acid sequences. Papain cleavage occurred primarily between residues 233/234 and 234/235. The carbohydrate compositions of the two species of Fc fragments were similar. It was concluded that under acid and reducing conditions papain cleavage of rat IgG2a occurred to the carboxy-terminal side of the hinge region. Prolonged papain digestion led to secondary attack in the carboxy-terminal end of the CGAMMA3 domain at an unidentified site, or sites, producing a stable second species of Fc fragments.  相似文献   

14.
Papain digestion of 7S immunoglobulin G (IgG) produces two 3.5S Fab fragments and one 3.5S Fc fragment1–8. The Fab fragment contains one light chain and one Fd fragment and is still able to combine specifically univalently with antigen. The Fc fragment is a dimer of the carboxyl terminal half of the heavy chain. Pepsin splits 7S IgG into some small peptides derived from Fc and one 5S F(ab′)2 fragment, which contains both antigen-binding sites. Based on this information, some investigators6,7 have postulated that pepsin splits the γ chains at the C-terminal side of the inter-heavy chain disulphide bridges, whereas papain splits at the N-terminal side of the inter-heavy chain disulphide bridges. We report here evidence that this model does not apply to all IgG subclasses. In the case of human IgG2 subclass myeloma proteins, papain splits initially at the C-terminal side of inter-heavy chain disulphide bridges. We also show that the amino-acid sequence of the Fc fragment of human IgG2 subclass so far determined has approximately 95% homology with that of human IgG1 and IgG4 subclasses reported by others9–15.  相似文献   

15.
Binding of the Fc domain of Immunoglobulin G (IgG) to Fcγ receptors on leukocytes can initiate a series of signaling events resulting in antibody-dependent cell-mediated cytotoxicity (ADCC) and other important immune responses. Fc domains lacking glycosylation at N297 have greatly diminished Fcγ receptor binding and lack the ability to initiate a robust ADCC response. Earlier structural studies of Fc domains with either full length or truncated N297 glycans led to the proposal that these glycans can stabilize an "open" Fc conformation recognized by Fcγ receptors. We determined the structure of an E. coli expressed, aglycosylated human Fc domain at 3.1 ? resolution and observed significant disorder in the C'E loop, a region critical for Fcγ receptor binding, as well as a decrease in distance between the C(H)2 domains relative to glycosylated Fc structures. However, comparison of the aglycosylated human Fc structure with enzymatically deglycosylated Fc structures revealed large differences in the relative orientations and distances between C(H)2 domains. To provide a better appreciation of the physiologically relevant conformation of the Fc domain in solution, we determined Radii of Gyration (R(g)) by small-angle X-ray scattering (SAXS) and found that the aglycosylated Fc displays a larger R(g) than glycosylated Fc, suggesting a more open C(H)2 orientation under these conditions. Moreover, the R(g) of aglycosylated Fc was reduced by mutations at the C(H)2-C(H)3 interface (E382V/M428I), which confer highly selective binding to FcγRI and novel biological activities.  相似文献   

16.
It has been well documented that papain cleaves an IgG1 molecule to release Fab and Fc domains; however, papain was found unable to release such domains from an IgG2. Here we present a new combinatory strategy to analyze the heterogeneity of the light chain (LC), single chain Fc (sFc), and Fab portion of the heavy chain (Fd) of an IgG2 molecule released by papain cleavage under mild reducing conditions. These domains were well separated on reversed-phase high performance liquid chromatography (RP-HPLC) and analyzed by in-line liquid chromatography time-of-flight mass spectrometry (LC–TOF/MS). In addition, some modifications of these domains were revealed by in-line mass spectrometry, and confirmed by the peptide mapping on LC–MS/MS analysis. This same strategy was proven suitable for IgG1 molecules as well. This procedure provides a simplified approach for the characterization of antibody biomolecules by facilitating the detection of low-level modifications in a domain. In addition, the technique offers a new strategy as an identification assay to distinguish IgG2 molecules on RP-HPLC, by which highly conserved Fc domains remain at a constant retention time (RT) unique to its subisotype, while varying RTs of the light chain and the Fd distinguish the monoclonal antibody from other molecules of the same isotype based on the underlying characteristics of each antibody.  相似文献   

17.
Four types of Fc fragments of different sizes were isolated by papain treatment of rabbit immunoglobulin G under various conditions and by subsequent chromatographic procedures. 1. Brief digestion at neutral pH without reduction produced a molecule in which the Fab and Fc fragments were still linked by a pair of labile disulphide bridges, and the Fc fragment released by cleaving these bonds, called 1Fc fragment, contained a portion of the ;hinge' region including an interchain disulphide bridge. Both complement-binding and guinea-pig skin-binding activities were retained by this fragment, which had mol. wt. 48000. 2. Prolonged digestion at neutral pH of immunoglobulin G whose labile inter-heavy-chain disulphide bridges had been reduced removed the ;hinge' region, giving mFc fragments (mol. wt. 46000), which lacked the capacity to bind guinea-pig skin but retained the antigenic as well as the complement-binding activities of 1Fc fragment completely. 3. Digestion at pH5.0 yielded a smaller fragment, sFc (mol. wt. 40000), which was no longer able to bind complement. Though the antigenic structure was intact, sFc fragment was curiously unable to precipitate with antibodies to the N-terminal determinants. 4. Fragment stFc (mol. wt. 25000), representing the C-terminal portion of Fc fragment, was formed from all the larger fragments by digestion at pH4.5. Only the C-terminal antigenic determinants were retained by stFc fragment.  相似文献   

18.
A mouse monoclonal antibody (AN9P1) to keratan sulphate is described. In a competitive-inhibition solution-phase radioimmunoassay employing 125I-labelled intact proteoglycan, it reacts preferentially with keratan sulphate bound to the core protein of adult human articular-cartilage proteoglycan and to a much lesser degree with keratan sulphate purified from this proteoglycan. Proteolytic cleavage of the proteoglycan by pepsin and trypsin has little effect on antibody binding, but treatment with papain decreases binding considerably and more than does treatment with keratanase. An even greater decrease in binding is observed after treatment with alkaline borohydride. A comparison of binding of antibody AN9P1 with that of another previously described monoclonal antibody, 1/20/5-D-4, to keratan sulphate [Caterson, Christner & Baker (1983) J. Biol. Chem. 258, 8848-8854] revealed similar binding characteristics, both showing much diminished binding after papain digestion of proteoglycan and even less with purified skeletal keratan sulphate. Removal of the Fc piece of antibody AN9P1 had no significant effect on the differential binding of divalent F(ab')2 fragment to proteoglycan, to papain-digested proteoglycan and to keratan sulphate, although there was a small decrease in binding to papain-digested proteoglycan. Conversion of the antibody into univalent Fab fragment with removal of the Fc piece resulted in diminished binding to proteoglycan, compared with that observed with IgG, and in enhanced binding to free keratan sulphate and to papain-digested proteoglycan. These results suggest that close proximity of keratan sulphate chains on the core protein of proteoglycans favours preferential reactivity of bivalent antibody with these species through cross-bridging of chains by antibody. Conversely, much decreased binding to keratan sulphate on proteoglycan core-protein fragments and to free keratan sulphate results from a lack of close proximity of keratan sulphate. By using univalent Fab fragment in these assays these differences in binding are minimized by preventing cross-bridging and thereby enhancing detection of smaller fragments without sacrificing too much sensitivity of detection of larger proteoglycan species. The persistent preferential binding of Fab fragment to proteoglycan is probably in part the result of the increased epitope density in the intact molecule compared with keratan sulphate in a more disperse form.  相似文献   

19.
Understanding the underlying mechanisms of Fc aggregation is an important prerequisite for developing stable and efficacious antibody-based therapeutics. In our study, high resolution two-dimensional nuclear magnetic resonance (NMR) was employed to probe structural changes in the IgG1 Fc. A series of (1)H-(15)N heteronuclear single-quantum correlation NMR spectra were collected between pH 2.5 and 4.7 to assess whether unfolding of C(H)2 domains precedes that of C(H)3 domains. The same pH range was subsequently screened in Fc aggregation experiments that utilized molecules of IgG1 and IgG2 subclasses with varying levels of C(H)2 glycosylation. In addition, differential scanning calorimetry data were collected over a pH range of 3-7 to assess changes in C(H)2 and C(H)3 thermostability. As a result, compelling evidence was gathered that emphasizes the importance of C(H)2 stability in determining the rate and extent of Fc aggregation. In particular, we found that Fc domains of the IgG1 subclass have a lower propensity to aggregate compared with those of the IgG2 subclass. Our data for glycosylated, partially deglycosylated, and fully deglycosylated molecules further revealed the criticality of C(H)2 glycans in modulating Fc aggregation. These findings provide important insights into the stability of Fc-based therapeutics and promote better understanding of their acid-induced aggregation process.  相似文献   

20.
Site-specific N-glycosylation of chicken serum IgG   总被引:2,自引:0,他引:2  
Suzuki N  Lee YC 《Glycobiology》2004,14(3):275-292
Avian serum immunoglobulin (IgG or IgY) is functionally equivalent to mammalian IgG but has one additional constant region domain (CH2) in its heavy (H) chain. In chicken IgG, each H-chain contains two potential N-glycosylation sites located on CH2 and CH3 domains. To clarify characteristics of N-glycosylation on avian IgG, we analyze N-glycans from chicken serum IgG by derivatization with 2-aminopyridine (PA) and identified by HPLC and MALDI-TOF-MS. There were two types of N-glycans: (1) high-mannose-type oligosaccharides (monoglucosylated 26.8%, others 10.5%) and (2) biantennary complex-type oligosaccharides (neutral, 29.9%; monosialyl, 29.3%; disialyl, 3.7%) on molar basis of total N-glycans. To investigate the site-specific localization of different N-glycans, chicken serum IgG was digested with papain and separated into Fab [containing variable regions (VH + VL) + CH1 + CL] and Fc (containing CH3 + CH4) fragments. Con A stained only Fc (CH3 + CH4) and RCA-I stained only Fab fractions, suggesting that high-mannose-type oligosaccharides were located on Fc (CH3 + CH4) fragments, and variable regions of Fab contains complex-type N-glycans. MS analysis of chicken IgG-glycopeptides revealed that chicken CH3 domain (structurally equivalent to mammalian CH2 domain) contained only high-mannose-type oligosaccharides, whereas chicken CH2 domain contained only complex-type N-glycans. The N-glycosylation pattern on avian IgG is more analogous to that in mammalian IgE than IgG, presumably reflecting the structural similarity to mammalian IgE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号