首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifteen ancestral genotypes of United States soybean cultivars were screened for differences in photosynthetic electron transport capacity using isolated thylakoid membranes. Plants were grown in controlled environment chambers under high or low irradiance conditions. Thylakoid membranes were isolated from mature leaves. Photosynthetic electron transport was assayed as uncoupled Hill activity using 2,6-dichlorophenolindophenol (DCIP). Soybean electron transport activity was dependent on genotype and growth irradiance and ranged from 6 to 91 mmol DCIP reduced [mol chlorophyll]–1 s–1. Soybean plastocyanin pool size ranged from 0.1 to 1.3 mol plastocyanin [mol Photosystem I]–1. In contrast, barley and spinach electron transport activities were 140 and 170 mmol DCIP reduced [mol chlorophyll]–1 s–1, respectively, with plastocyanin pool sizes of 3 to 4 mol plastocyanin [mol Photosystem I]–1. No significant differences in the concentrations of Photosystem II, plastoquinone, cytochrome b6f complexes, or Photosystem I were observed. Thus, genetic differences in electron transport activity were correlated with plastocyanin pool size. The results suggested that plastocyanin pool size can vary significantly and may limit photosynthetic electron transport capacity in certain species such as soybean. Soybean plastocyanin consisted of two isoforms with apparent molecular masses of 14 and 11 kDa, whereas barley and spinach plastocyanins each consisted of single polypeptides of 8 and 12 kDa, respectively.Abbreviations DAP days after planting - DCIP 2,6-dichlorophenolindophenol - LiDS lithium dodecyl sulfate - PPFD photosynthetic photon flux density (mol photons m–2 s–1) - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

2.
The role of electrostatic interactions in determining the rate of electron transfer between cytochrome f and plastocyanin has been examined in vitro with mutants of turnip cytochrome f and mutants of pea and spinach plastocyanins. Mutation of lysine residues Lys58, Lys65 and Lys187 of cytochrome f to neutral or acidic residues resulted in decreased binding constants and decreased rates of electron transfer to wild-type pea plastocyanin. Interaction of the cytochrome f mutant K187E with the pea plastocyanin mutant D51K gave a further decrease in electron transfer rate, indicating that a complementary charge pair at these positions could not compensate for the decreased overall charge on the proteins. Similar results were obtained with the interaction of the cytochrome f mutant K187E with single, double and triple mutants of residues in the acidic patches of spinach plastocyanin. These results suggest that the lysine residues of the basic patch on cytochrome f are predominantly involved in long-range electrostatic interactions with plastocyanin. However, analysis of the data using thermodynamic cycles provided evidence for the interaction of Lys187 of cytochrome f with Asp51, Asp42 and Glu43 of plastocyanin in the complex, in agreement with a structural model of a cytochrome f-plastocyanin complex determined by NMR.  相似文献   

3.
S He  S Modi  D S Bendall    J C Gray 《The EMBO journal》1991,10(13):4011-4016
Site-directed mutants of the pea plastocyanin gene in which the codon for the surface-exposed Tyr83 has been changed to codons for Phe83 and Leu83 have been expressed in transgenic tobacco plants. The mutant proteins have been purified to homogeneity and their conformations shown not to differ significantly from the wild-type plastocyanin by 1H-NMR and CD. Overall rate constants for electron transfer (k2) from cytochrome f to plastocyanin have been measured by stopped-flow spectrophotometry and rate constants for binding (ka) and association constants (KA) have been measured from the enhanced Soret absorption of cytochrome f on binding plastocyanin. These measurements allow the calculation of the intrinsic rate of electron transfer in the binary complex. An 8-fold decrease in the overall rate of electron transfer to the Phe83 mutant is due entirely to a decreased association constant for cytochrome f, whereas the 40-fold decrease in the overall rate of electron transfer to the Leu83 mutant is due to weaker binding and a lower intrinsic rate of electron transfer. This indicates that Tyr83 is involved in binding to cytochrome f and forms part of the main route of electron transfer.  相似文献   

4.
Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 Å resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between theChlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 Å rms deviation in the C positions between theChlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel -barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochromef and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (4 Å) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (12–15 Å) and involves the nearly conserved residue Tyr-83 in the negative patch.  相似文献   

5.
A spinach plastocyanin (Pc) mutant, Pc(Leu12His), has been constructed by site-directed mutagenesis and expressed in Escherichia coli to probe the importance of the hydrophobic patch in the interaction with Photosystem 1. The mutant has been characterized by optical absorption, EPR spectroscopy and redox titration. The electron transfer to Photosystem 1 was investigated by flash-induced time-resolved absorption measurements at 830 nm. The Pc(Leu12His) mutant showed a major change in the Photosystem 1 kinetics compared to wild-type Pc. In contrast to the biphasic Photosystem 1 reduction observed for the physiological reaction partner, only the slow phase was discerned when Pc(Leu12His) replaced wild-type Pc as the electron donor. The reaction showed a hyperbolic dependence with increasing Pc concentration, saturating at a rate constant value of 2000 s-1, which is about 10 times slower than the corresponding rate constant for wild-type Pc. Obviously, this position i s critical for a proper reaction. Moreover, the reaction showed a titrating behavior with a pKa of 6.7. Thus, it appears that both shape and charge of the residue in this position are important. A plausible reaction mechanism for electron transfer between wild-type Pc and Photosystem 1 is discussed. The role of electrostatic interactions may be that of long-range guidance and initial recognition that allow the two proteins to seek a pre-docking configuration(s). Then a short-range rearrangement(s), involving also hydrophobic interactions, forms an optimum docking configuration prior to electron transfer.  相似文献   

6.
Electron transfer from plastocyanin to photosystem I.   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.  相似文献   

7.
8.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

9.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6-8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42-45 and Nos. 59-61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42-45 and Nos. 59-61. Modification of plastocyanin at residues Nos. 42-45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59-61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 +/- 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42-45 or Nos. 59-61.  相似文献   

10.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6–8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42–45 and Nos. 59–61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42–45 and Nos. 59–61. Modification of plastocyanin at residues Nos. 42–45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59–61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 ± 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42–45 or Nos. 59–61.  相似文献   

11.
Plastocyanin levels in barley (Hordeum vulgare cv Boone) were found to be dependent on growth irradiance. An immunochemical assay was developed and used to measure the plastocyanin content of isolated thylakoid membranes. Barley grown under 600 mole photons m–2s–1 contained two- to four-fold greater quantities of plastocyanin per unit chlorophyll compared with plants grown under 60 mole photons m–2s–1. The plastocyanin/Photosystem I ratio was found to be 2 to 3 under high irradiance compared with 0.5 to 1.5 under low irradiance. The reduced plastocyanin pool size in low light plants contributed to a two-fold reduction in photosynthetic electron transport activity. Plastocyanin levels increased upon transfer of low light plants to high irradiance conditions. In contrast, plastocyanin levels were not affected in plants transferred from high to low irradiance, suggesting that plastocyanin is not involved in the acclimation of photosynthesis to shade.Abbreviations: BSA bovine serum albumin - chl chlorophyll - cyt cytochrome - DCIP 2,6-dichlorophenolindophenol - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I - TBS 20 mM Tris-HCl pH 7.5, 500 mM NaCl - TTBS 20 mM Tris-HCl pH 7.5, 500 mM NaCl, 0.5% (w/v) polyoxyethylenesorbitan monolaurate (Tween-20)  相似文献   

12.
13.
The electron-transfer reaction between spinach wild-type plastocyanin (Pc(WT)) two site-directed mutants, Pc(Thr79His) and Pc(Lys81His), and spinach Photosystem 1 particles, has been studied as a function of protein concentration, ionic strength and pH by using laser-flash absorption spectroscopy. The kinetic data are interpreted using the simplest possible three-step model, involving a rate-limiting conformational change preceding intracomplex electron transfer. The three proteins show similar concentration, pH and ionic strength dependencies. The effects of ionic strength and pH on the reaction indicate a strong influence of complementary charges on complex formation and stabilization. Studies with apoprotein support the opinion that the hydrophobic patch is critical for an productive interaction with the reaction center of Photosystem 1. Together with earlier site-directed mutagenesis studies, the absence of a detectable Photosystem 1 reaction in the presence of reduced azurin, stellacyanin, cytochrome c and cytochrome c551, demonstrates the existence of a high level of specificity in the protein-protein interface in the formation of an efficient electron-transfer complex.  相似文献   

14.
The reduction of plastocyanin by cytochromes c and f has been investigated with mutants of spinach plastocyanin in which individual, highly conserved surface residues have been modified. These include Leu-12 and Phe-35 in the 'northern' hydrophobic patch and Tyr-83 and Asp-42 in the 'eastern' acidic patch. The differences observed all involved binding rather than the intrinsic rates of electron transfer. The Glu-12 and Ala-12 mutants showed small but significant decreases in binding constant with cytochrome c, even though the cytochrome is not expected to make contact with the northern face of plastocyanin. These results, and small changes in the EPR parameters, suggested that these mutations cause small conformational changes in surface residues on the eastern face of plastocyanin, transmitted through the copper centre. In the case of cytochrome f, the Glu-12 and Ala-12 mutants also bound less strongly, but Leu12Asn showed a marked increase in binding constant, suggesting that cytochrome f can hydrogen bond directly to Asn-12 in the reaction complex. A surprising result was that the kinetics of reduction of Asp42Asn were not significantly different from wild type, despite the loss of a negative charge.  相似文献   

15.
The Photosystem I complex catalyses the transfer of an electron from lumenal plastocyanin to stromal ferredoxin, using the energy of an absorbed photon. The initial photochemical event is the transfer of an electron from the excited state of P700, a pair of chlorophylls, to a monomer chlorophyll serving as the primary electron acceptor. We have performed a systematic survey of conserved histidines in the last six transmembrane segments of the related polytopic membrane proteins PsaA and PsaB in the green alga Chlamydomonas reinhardtii. These histidines, which are present in analogous positions in both proteins, were changed to glutamine or leucine by site-directed mutagenesis. Double mutants in which both histidines had been changed to glutamine were screened for changes in the characteristics of P700 using electron paramagnetic resonance, Fourier transform infrared and visible spectroscopy. Only mutations in the histidines of helix 10 (PsaA-His676 and PsaB-His656) resulted in changes in spectroscopic properties of P700, leading us to conclude that these histidines are most likely the axial ligands to the P700 chlorophylls.  相似文献   

16.
The precursor plastocyanin from Silene pratensis (white campion) has been expressed in Escherichia coli. The precursor protein was accumulated in insoluble aggregates and partially purified as an apo-protein. The purified precursor apo-plastocyanin was processed to the mature apo-plastocyanin by chloroplast extracts. N-terminal amino-acid sequencing indicated that the processed protein was identical to the N-terminal amino-acid residues of mature plastocyanin that was deduced from the nucleotide sequence. The copper could be incorporated into the apo-plastocyanin of mature size in vitro, but could not into the precursor apo-plastocyanin under the same conditions. Absorption spectra and reduction potential of the reconstituted mature plastocyanin were indistinguishable from those of the purified spinach plastocyanin. The electron transfer activities of the reconstituted plastocyanin with both the Photosystem I reaction center (P700) and cytochrome f were almost the same as those of the purified spinach plastocyanin.  相似文献   

17.
Laser-flash kinetic absorption spectroscopy has been used to compare the rate constants for electron transfer from reduced plastocyanin and cytochrome c552, obtained from the green alga Monoraphidium braunii, to photooxidized P700 (P700+) in photosystem I (PSI) particles from spinach Sigmoidal protein concentration dependence for the observed electron-transfer rate constants are obtained for both proteins. In the absence of added salts, the P700+ reduction rate increases as the pH decreases from approximately 8 to 5.5, then decreases to pH 3.5, this effect being more pronounced with cytochrome c552 than with plastocyanin. At neutral pH, plastocyanin is a more efficient electron donor to P700+ than cytochrome c552, whereas at pH 5.5, which is closer to physiological conditions, the two redox proteins react with approximately equal rate constants. In the presence of increasing concentrations of added salts, the P700+ reduction rate constants for both proteins increase at pH greater than 5.5, but decrease at pH less than 4. At neutral pH, the observed rate constants for both algal proteins have a biphasic dependence on sodium chloride concentration, increasing in a parallel manner with increasing salt concentration, reaching a maximum value at 50 mM NaCl, then decreasing. A similar biphasic dependence is obtained with magnesium chloride, but in this case the maximum value is reached at salt concentrations ten times smaller, suggesting a specific role for the divalent cations in the electron-transfer reaction.  相似文献   

18.
The reversible inhibition, by low osmolarity, of the rate of electron transport through photosystem 1 has been investigated in spinach chloroplasts. By use of different electron donor systems to photosystem 1, inhibitors of plastocyanin, and by measurement of the extent of photooxidation of the photosystem 1 reaction center P700, the inhibition site has been localized on the electron donor side of this photosystem. From comparison of the influence of impermeant and permeant salts on the electron transport rate, and from the effect of ionic strength on the oxidation of externally added plastocyanin by subchloroplast preparations, it is concluded that low ionic strength within the thylakoids inhibits the photooxidation of endogenous plastocyanin by P700. The results are taken as evidence that plastocyanin is oxidized by P700 at the internal (lumen) side of the osmotic barrier in the thylakoid membrane.  相似文献   

19.
(1) The effect of four active antisera against plastocyanin on Photosystem I-driven electron transport and phosphorylation was investigated in spinach chloroplasts. Partial inhibition of electron transport and stimulation of plastocyanin-dependent phosphorylation were sometimes observed after adding amounts of antibodies which were in large excess and not related to the plastocyanin content of the chloroplasts. This indicates effects of the antibodies on the membrane. (2) The antibodies against plastocyanin neither directly nor indirectly agglutinated unbroken chloroplast membranes. (3) The plastocyanin content of right-side-out and inside-out thylakoid vesicles isolated by aqueous polymer two-phase partition from chloroplasts disrupted by Yeda press treatment was determined by quantitative rocket electroimmunodiffusion. Right-side-out vesicles retained about 25%, inside-out vesicles none of the original amount of plastocyanin. (4) The effect of externally added plastocyanin on the reduction of P-700 was studied by monitoring the absorbance changes at 703 nm after a long flash. In inside-out vesicles P-700 was reduced by the added plastocyanin but not in right-side-out vesicles and class II chloroplasts. These results provide strong evidence for a function of plastocyanin at the internal side of the thylakoid membrane.  相似文献   

20.
Electron transport from Photosystem II to Photosystem I of spinach chloroplasts can be stimulated by bicarbonate and various carbonyl or carboxyl compounds. Monovalent or divalent cations, which have hitherto been implicated in the energy distribution between the two photosystems, i.e., spillover phenomena at low light intensities, show a similar effect under high light conditions employed in this study. A mechanism for this stimulation of forward electron transport from Photosystem II to Photosystem I could involve inhibition of two types of Photosystem II partial reactions, which may involve cycling of electrons around Photosystem II. One of these is the DCMU-insensitive silicomolybdate reduction, and the other is ferricyanide reduction by Photosystem II at pH 8 in the presence of dibromothymoquinone. Greater stimulation of forward electron transport reactions is observed when both types of Photosystem II cyclic reactions are inhibited by bicarbonate, carbonyl and carboxyl-type compounds, or by certain mono- or divalent cations.Abbreviations used: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichloroindophenol; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; FeCN, potassium ferricyanide; MV, methylviologen; PS I, photosystem I; PS II, photosystem II; SM, silicomolybdic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号